
Improving STM Performance with Transactional Structs∗

Ryan Yates
Computer Science Department

University of Rochester
Rochester, NY, USA

ryates@cs.rochester.edu

Michael L. Scott
Computer Science Department

University of Rochester
Rochester, NY, USA

scott@cs.rochester.edu

ABSTRACT
Software transactional memory (STM) has been an impor-
tant and useful feature for Haskell. Its performance, how-
ever, is limited by several inefficiencies. While safe con-
current computations are easy to express in Haskell’s STM,
concurrent data structures suffer unfortunate bloat in the
implementation due to an extra level of indirection for mu-
table references as well as the inability to express unboxed
mutable transactional values. We address these deficien-
cies by introducing TStruct to the GHC run-time system,
allowing strict unboxed transactional values as well as muta-
ble references without an extra indirection. Using TStruct

we implement several data structures, discuss their design,
and provide benchmark results on a large multicore machine.
Our benchmarks show that some concurrent data structures
built with TStruct significantly out-perform and out-scale
their TVar-based equivalents.

1. INTRODUCTION
The Haskell programming language, as implemented by

the Glasgow Haskell Compiler (GHC), has many innovative
features, including a rich run-time system to manage the
unique needs of a pure functional language with lazy evalu-
ation. Since its introduction by Harris et al. in 2005 [5],
GHC’s STM has grown increasingly popular. Most uses
are not performance critical, but rather focus on ensuring
correctness in the face of concurrency from user interaction
or system events. Transactional memory (TM) based con-
current data structures are less common and little effort
has been invested in the sort of performance tuning that
has characterized STM work for imperative languages [6,
chap. 4].

In comparison to most of those imperative implementa-
tions, GHC’s TM is unusual in its use of explicit transac-
tional variables called TVars. Inspecting or manipulating
these variables outside of the context of a transaction is not
allowed. There is no special compiler support for STM be-
yond the existing type system. STM is supported instead
by the run-time system. Inside transactions, execution is re-
stricted to operations on TVars and the usual pure functional
computations. TVar operations consist of creation (with an
initial value), reading, and writing.

In our work we expand from TVars to TStructs, allowing
users to express transactional computations on structures

∗This work was funded in part by the National Science Foun-
dation under grants CCR-0963759, CCF-1116055, CCF-
1337224, and CCF-1422649, and by support from the IBM
Canada Centres for Advanced Studies.

with word and reference fields. This change can significantly
reduce the memory overhead of TM data structures, speed
up execution, and in some cases reduce contention by de-
creasing the number of synchronization operations. At this
time we are still missing compiler and language support to
make programming with TStruct as easy as programming
with TVars, but we expect support to be possible and this
work shows that the performance improvements to be gained
make the effort worthwhile.

In this paper we

1. describe extensions to GHC’s fine-grain locking STM
to support transactional structures containing a mix
of words and pointers while maintaining the features
(retry and orElse) and properties of the STM (no
global bottlenecks and read-only transactions take no
locks).

2. implement several data structures with both TStruct

and TVar to explore where performance improves or
degrades.

3. provide results from data structure microbenchmarks
on a large multicore machine.

Section 2 provides background information on GHC’s ex-
isting fine-grain locking STM implementation as well an
overview of the stm library’s interface for writing transac-
tions. In Section 3 we describe deficiencies in the existing
implementation, and introduce the TStruct interface and
implementation as a means of addressing these deficiencies.
In Section 5 we present four concurrent data structures built
using TStruct, and characterize the behavior of their meth-
ods. We describe our benchmarking techniques and present
performance results in Section 6. We finish with related
work, future work, and conclusions in Sections 7 and 8.

2. BACKGROUND

2.1 STM Interface
GHC Haskell’s STM API is given in Figure 1. The STM

type is implemented the same as the IO type but with only
the TVar-manipulating actions. The atomically function
takes an STM action and gives an IO action which, when exe-
cuted, will perform the transaction atomically, so that other
threads see either all or none of the transaction’s effects.
New variables are made with newTVar, taking an initial value
for the variable. The IO variant is useful for creating global
variables.

Text Box
IFL 2016

instance Monad STM where . . .

data TVar a = . . .
instance Eq (TVar a) where . . .

newTVarIO : : a → IO (TVar a)
newTVar : : a → STM (TVar a)

readTVar : : TVar a → STM a
writeTVar : : TVar a → a → STM ()

atomically : : STM a → IO a

retry : : STM a
orElse : : STM a → STM a → STM a

Figure 1: API for STM with TVars.

struct TVar {
Header header
Word version
WatchQueue∗ queue
HeapObject∗ value

}

struct TRecEntry {
TVar∗ tvar
HeapObject∗ old value
HeapObject∗ new value
Word version
}

Figure 2: STM implementation for TVars.

The retry action and orElse combinator allow for block-
ing transactions and composing alternatives. When retry

is executed the transaction is blocked and waits for one of
the TVars that it has read to change values before attempt-
ing again to execute. The orElse combinator tries the first
action and either commits it or, if it executes retry, undoes
all its effects and executes the second action instead. Note
that orElse atomically chooses between the actions, so for
the result to be the result of the second action it must hold
for the duration of the whole transaction that the first action
results in retry.

2.2 STM Implementation
The run-time system supports STM at several levels. We

focus on the run-time library level (written in C) and the
garbage collection support. Transactions proceed in three
phases: execution, validation, and commit. Execution must
track both read and write accesses to TVars, recording writes
and providing the new values in subsequent reads. Valida-
tion ensures that the transaction observed a consistent view
of memory. Commit acquires locks for TVars being updated
and performs the updates. If there are any failures in these
steps, the transaction will discard its work and start again
from the beginning.

When a transaction starts, a transactional record (TRec) is
created. The TRec maintains a chunked linked list of entries
recording each TVar read, the value seen when encountered,
and any new value written to the TVar. Executing readTVar

will first search the TRec for a matching entry and use any
new value as the value read. If there is no entry for the TVar

then a new entry is created and the value is read directly
from the TVar. The value field in each TVar can double
as a lock variable: the locking thread stores a pointer to
its transactional record instead of the actual value. When
adding a new TRec entry we must first check to see if the
pointer already refers to a TRec. If so, we spin until the
value changes. We will see later that locks are never held
for unbounded time, so deadlock is not possible. Performing
a writeTVar is similar to reading: we start by searching for
an entry or adding a new one; then we record the value being
written in the TRec entry.

After a transaction finishes execution, it is validated by
comparing TRec entry values with the values in the TVars.
Details about validation and commit are given in Section 4.

3. ADDING TRANSACTIONAL STRUCTS
In this section we discuss some problems with TVars and

how TStruct gives the expressiveness to overcome many of
these problems. We also give details of our implementation
and the various parts of GHC that were modified.

3.1 Indirection with TVars
Consider a red-black tree. A node of such a tree will typ-

ically consist of pointers to children, a parent pointer, fields
for key and value, and a field for the color of the node. The
simplest insertion will search to find the insertion location,
make a new node, and link it to its parent. Linking mutates
the pointer field of the parent node. When a rebalance is
needed, however, several pointers will be reassigned as well
as color fields. We could choose to keep the color fields as
pure values and make new nodes whenever the color changes,
but this can be difficult to manage as each new node must
be relinked. Making the color mutable by storing the color
value in a TVar adds significant memory overhead and in-
direction. Each TVar must point to a heap object, not an
unboxed value. To store the color, we have a pointer to
a TVar in the node object and a pointer in the TVar to a
boxed value, a significant amount of overhead for one bit of
information.

3.2 Mutable Unboxed Values
We avoid some of the indirection problems with TVars by

introducing a new built-in transactional structure we call
TStruct. Every TStruct can be allocated with a fixed num-
ber of word sized fields and pointer fields, each of which
can be written and read transactionally. We can then store
fields like key, value, and color as words in the structure
and pointers to other nodes as pointer fields. Perhaps more
important than the space saving is avoiding indirection. By
keeping the words and pointers close together we are likely
to need to touch fewer cache lines than if we must follow
pointers to get values.

Unfortunately, pointer fields of a TStruct often still en-
tail a level of indirection to accommodate sum types like
Node, which may be either true nodes or Nil. For the true
node case, the implementation is simply an indirection word
that points to the TStruct for that node. GHC is expected
soon to be able to unpack objects like our TStruct into sum
types, and we hope to leverage that ability to avoid the final
indirection. This may aid in TVar based data structures as
well, but will not, in that case, serve to reduce or coalesce
STM metadata.

data TStruct a = . . .

instance Eq (TStruct a) where . . .

newTStructIO : : Int → Int → a → IO (TStruct a)
newTStruct : : Int → Int → a → STM (TStruct a)

readTStruct : : TStruct a → Int → STM a
writeTStruct : : TStruct a → Int → a → STM ()

readTStructWord : : TStruct a → Int → STM Word
writeTStructWord : : TStruct a → Int → Word

→ STM ()

lengthTStruct : : TStruct a → Int
lengthTStructWords : : TStruct a → Int

Figure 3: API for TStruct.

3.3 Implementation Details

3.3.1 Haskell API
Our implementation of TStruct is based on GHC’s small

array support, specifically the SmallMutableArray# type.
Each TStruct has three parts: metadata, words, and point-
ers. The metadata includes size fields that indicate the num-
ber of word and pointer fields, together with STM metadata
that mirrors that of a TVar: a lock word, a lock counter, and
a version number. The size of a TStruct never changes and
for many uses could easily be known at compile time. Fu-
ture work will explore exploiting this for better performance.
For now we make use of “unsafe” read and write operations
to avoid bounds checks when appropriate. Garbage collec-
tion of TStruct objects simply follows the pointer fields as
it would in a SmallMutableArray#.

A simple API for working with TStruct is given in Fig-
ure 3. The newTStruct actions create a new struct with pa-
rameters for number of words and number of pointers and
an initializing value for the pointers. Note that we are lim-
ited to one type of pointer. Nothing in the implementation
requires this restriction and we use this simple API along
with unsafeCoerce to build a richer API specific to particu-
lar data structures. Transactional reading and writing work
similarly to TVar but with an index. Out of range indices
will raise an exception. Lengths in TStructs are immutable
so we have pure functions that give the number of pointers
and words.

In addition, for some data structures, we make data struc-
ture specific initialization actions that are non-transactional.
When TVars are created there is only one field to initialize
and this initialization is done non-transactionally. That is,
the write is not delayed until commit, but is immediately
set in the TVar (since that TVar is not yet visible to any
other thread). With TStruct there are several fields that
may need initialization. In future work we would like to
explore an API that gives static guarantees that these non-
transactional accesses happen only on private structures.

3.3.2 Run-time System Details
To support TStruct, the existing STM runtime is aug-

mented with a separate list of TRec entries for tracking
TStruct accesses. The TStruct entries contain an additional
field to indicate the accessed index within the TStruct. The

offset can be compared with the number of pointer fields to
determine if the access is a word access or a pointer access
(this is essential for garbage collection to correctly handle
TRecs). Details about the commit are in Section 4.

4. STM CORRECTNESS WITH TSTRUCT
Haskell’s STM has its roots in the OSTM of Fraser and

Harris [3, 4]; TStruct builds on this implementation. In this
section we will show that our TStruct implementation (and
the original GHC STM implementation) are strictly serializ-
able, meaning that for any concurrent STM execution there
exists some total order on transactions that is consistent
with “real time” (if transaction T1 finishes before transac-
tion T2 in the implementation, then T1 precedes T2 in the
total order), and that would have produced the same results
if executed sequentially.

4.1 Commit Overview
We can think of transactions as executing in two phases.

The first phase executes the code of the transaction and
builds the transactional record (TRec). Interaction with
shared memory in this phase consists only of the initial reads
of TVars and TStructs; subsequent reads are satisfied from
the TRec. At the end of this phase the TRec captures the
data that were read and the changes to shared state that
would need to occur to make the transaction “happen.”

The second phase is the commit, which effects the changes
in the TRec, but only if the state of shared memory matches
the view recorded in the TRec. That is, commit should only
happen if it would be consistent with stopping the world
and performing the execution while directly mutating shared
memory. We must show that the view of shared memory at
commit is the same as the view during execution, that this
view is a consistent view of memory, and other transactions
will be prevented from committing conflicting changes con-
currently.

The commit phase has three steps, validate, read check,
and update. If either validate or read check fails, the trans-
action will release its locks and restart without having made
any changes. If the update step is reached, the transaction
will always make its changes and then release its locks. This
implies that two conflicting transactions cannot both reach
their update step (a conflict is where two transactions use
the same memory location and at least one writes to it).

4.2 TVar Commit
Psuedocode for the existing GHC STM implementation

appears in Figure 4. As in OSTM, the value word in a TVar

is also the lock variable. As TVars only hold references to
heap objects a locked state can be indicated by referenc-
ing a special heap object that cannot be referenced by user
code. In a simplification of OSTM, however, the GHC code
does not share access to TRecs among threads: OSTM lever-
ages shared access to ensure that when conflicting transac-
tions are committing at the same time one of them succeeds
(thus ensuring lock-free progress). GHC’s STM admits the
possibility of livelock: when a TRec pointer is read from a
TVar, the current thread releases any locks it holds and re-
tries. This read barrier is safe because, as we shall see later,
locks are held only for a finite number of steps (assuming
OS threads are scheduled with some fairness).

In addition to the value/lock field, TVars contain a version
field which is incremented with every update. The valida-

tion step does three things: acquire locks for TVars in the
write set, check that the view of memory seen during exe-
cution is still the state of memory, and record version num-
bers for all the TVars in the read set. The read check step
ensures that the view of memory seen during both execu-
tion and validation is in fact consistent, and further that no
other committing transactions conflict. Finally the update
increments version numbers, writes new values, and releases
locks.

4.3 The need for Read Check
Consider the timeline given in Figure 5. Transaction T0

reads two TVars, x and y, initially both zero. Between its
reads of x and y transaction T1 fully executes and commits,
updating both x and y to one and giving T0 an inconsistent
view of memory with x = 0 and y = 1. If T0’s commit
were to continue without any other transactions doing work
this inconsistency would be discovered in validate where the
expected value, zero, stored in the TRec for x, would not
match the value, one, in the TVar. Other transactions, how-
ever, can commit while T0 is validating, leading to validation
seeing the same inconsistent view of memory as execution.
The read check detects this by checking the version numbers
stored in validate and the values again. For the value check
in read check to succeed x must be set back to zero (by T4

in the diagram), but this cannot happen without the version
number also increasing (subscript 4 in the read of x in read
check).

We might be tempted to store the version numbers during
execution. This, however, would remove an important ben-
efit of value-based validation. Consider a program in which
multiple threads are handling events that arrive in a series
of queues ordered by priority, and an execution in which
a thread T sees all the highest priority queues empty and
starts handling a low-priority event. While T is handling its
event, new high-priority events arrive and are quickly han-
dled by other worker threads. When T starts validation all
the high-priority queues are again empty, but their version
numbers have all been incremented. As a result, T will be
unable to commit, even though logically it should be able
to. By storing version numbers in validate the window for
conflicting commits is narrowed considerably.

4.4 TStruct Commit
With TVars the lock and the value were conflated. We

cannot use the same technique with TStructs as they have
word values in addition to references. Instead we can con-
flate the lock and the version number. Odd values indicate
that the TStruct is locked, with the high order bits identify-
ing the thread that holds the lock. Even values indicate that
the TStruct is unlocked, with the high order bits specifying
a version number. Psuedocode for TStruct commit appears
in Figure 4. An additional field is included in TStructs for
a lock count, as multiple fields in a TStruct may be written
in a transaction. Validation must now handle there being
multiple entries, reads and writes, that are protected by a
single lock and a single version number. Reads will check
the value, but in contrast to the TVar case this will not si-
multaneously check the lock status. A separate check for the
lock is needed. The TStruct could be locked by this trans-
action, however. If it is locked by this transaction we must
not treat the lock field as a version number! When the lock
is first acquired, the version number is stored for later use

in unlocking (by writing that version number incremented
by two). If the committing transaction does not hold the
lock, the entry is a read, the old value matches, and the
lock is not held, then we record the version number for the
TStruct. In the read check we again check all the entries in
the read set for matching values and either a lock held by
this transaction or a matching version number (the version
number cannot change if we hold the lock). When updating
we write the new value first and then unlock with the next
version number.

4.5 Correctness
Consider a single TVar location x and the ways in which

validation, read check, and updates to that location can in-
terleave. Updates first acquire the lock in validate, then
increment the version and unlock by writing the new value
in update. Because updates are guarded by locking and un-
locking the location we know that all updates are ordered.
We can understand the interaction of these updates with a
transaction T that is committing and only reads x by con-
sidering two parallel timelines, one for T and one for the or-
dered updates to x. Transaction T will value check x, read
the version, then value check x again in validate. Later in
the read check it will value check x then check that the ver-
sion matches. For the span between T ’s reads of x’s version
we know immediately that an increment to x’s version will
be detected. This leaves only a few possible combinations
that may happen. An update could start between the value
check and the version read in validate, locking x and in-
crementing its version immediately before T ’s version read.
With x locked, however, it will fail the value check before the
second version read, so the lock release must happen before
this value check. The value check will then fail because the
value will be different (if it isn’t, there is no conflict). The
only remaining possibility is a second update to x that puts
the old value back. The value, however, will not be updated
until after the version is incremented. Therefore if we suc-
cessfully reach the end of the read check for x we know that
no updates have happened to x between the version reads
and that x has the same value seen in execution.

Given that each read-only location of T has a span where
no updates have happened, and the entire read set is visited
in validate before it is visited again in the read check, there
exists some point in the intersection of those spans where
all the values hold and all the locks for the write locations
are held. We do not know that this point exists until the
end of the read check. Even if values have changed at that
point we know that the updates could only have happened
in a transaction that did not access any of T ’s written loca-
tions, because those locations were locked. The updates can
then be ordered after T . Any updates that would lead to
an inconsistent view of memory are ruled out because they
would require some update to the version before T ’s read
check finishes.

For TStruct we have equivalent properties but several de-
tails change, because it is the lock and the version that are
conflated instead of the lock and the value. Updates write
values first, then versions, because the version is written at
lock release. The version is still the value that is increasing
with every update and updates are still ordered due to the
lock acquire and release. The span between version reads
to a read set location x will detect any overlap with an up-
date. Successfully reaching the end of the read check then

commit(TRec∗ trec) {
validate (trec)
read check(trec)
update(trec)

}

bool value check(entry∗ e) {
return e→tvar→value == e→old value

}

validate (TRec∗ trec) {
for (e in trec) {

i f (i s wr i te (e)) {
abort i f (! try lock (e)

| | ! value check(e))
} else {

abort i f (! value check(e))
e→version = e→tvar→version
abort i f (! value check(e))

}
}
}

read check(TRec∗ trec) {
for (e in read set (trec)) {

abort i f (! value check(e)
| | e→tvar→version 6= e→version)

}
}

update(TRec∗ trec)
{

for (e in write set (trec)) {
e→tvar→version++
e→tvar→value = e→new value

}
}

commit(TRec∗ trec) {
validate (trec)
read check(trec)
update(trec)

}

bool value check(entry∗ e) {
return e→tstruct→payload [e→index]

== e→old value
}

validate (TRec∗ trec) {
for (e in trec) {

i f (i s wr i te (e)) {
abort i f (! try lock (e) | | ! value check(e))

} else {
abort i f (! value check(e))
version lock = e→tstruct→lock
i f (version lock 6= this lock) {

abort i f (is locked (version lock)
| | ! value check(e))

e→version = version lock
}
}
}
}

read check(TRec∗ trec) {
for (e in read set (trec)) {

version lock = e→tstruct→lock
abort i f ((version lock 6= e→version

&& version lock 6= this lock)
| | ! value check(e))

}
}

update(TRec∗ trec)
{

for (e in write set (trec)) {
e→tstruct→payload [e→index] = e→new value
e→tstruct→lock = e→tstruct→version+2

}
}

Figure 4: Commit psuedocode for TVars on the left and TStructs on the right.

Update

y = 15
read

y = 1
x = 1
T5

x = 04
read

y = 0
x = 0
T4

Read Check

y = 13
read

y = 1
x = 1
T3

x = 02
read

y = 0
x = 0
T2

Validate

y = 11
read

y = 1
x = 1
T1

x = 00
read

ExecuteT0

Figure 5: Timeline illustrating a sequence of commits that could lead to committing with an inconsistent view of memory.
This diagram is from the perspective of T0’s execution and commit. Reads of shared memory (with values subscripted with the
corresponding version number) are noted above the line while successful commits from other transactions and their updates
are below the line. A consistent view of memory will always have both x and y with the same value.

has the same implication as with TVars: the view of mem-
ory matches the state seen in execution and no conflicting
updates happen until after a point where the locks are held
and simultaneously the values matched. Updates to mul-
tiple locations in a TStruct result in the lock being held
longer—not multiple acquires or releases—so this does not
introduce any additional complexity for correctness.

5. DATA STRUCTURES WITH TSTRUCT
In this section we discuss our TStruct-based implemen-

tations of four data structures: red-black trees, skip lists,
cuckoo hash, and hashed array mapped tries.

5.1 Red-Black Tree
In Section 3.1 we discussed our red-black tree node for

both TVar and TStruct versions. Of the data structures we
implemented, the red-black tree was the simplest in terms
of the node design. Each node only points to nodes of the
same type and layout and every node is the same size. It
may, however, have the most complex code due to handling
rebalancing. It presents an interesting case as it is a sim-
ple data structure while still providing good worst case per-
formance not relying on probabilistic outcomes. Despite it
simplicity, it is complex enough to drive extensive research
in the context of concurrent data structures including with
transactional memory [2, 3, 9].

The transactional memory approach gives great flexibility
by allowing easy expression of concurrent data structures
that are very difficult to otherwise express while approaching
the fairness properties of a tailored solution. Indeed, trans-
actional memory allows an arbitrary composition of individ-
ual operations into atomic operations, a much more difficult
task then the, until recently elusive, wait-free algorithm. Re-
cent work by Natarajan, Savoie, and Mittal has derived a
wait-free algorithm for concurrent red-black trees [10] giving
an interesting point of comparison for TM.

For transactional memory the difficulty comes in perfor-
mance, some of which may only come with data structure
specific improvements. Transactional structs addresses an
important common part of many data structures, the node
representation. By allowing the expression of whole nodes
with both references and values we decrease the memory
overhead and increase the locality of the data.

5.2 Skip List
Skip lists have been a fruitful target for concurrency re-

search [7, 15]. Unlike red-black trees, skip lists do not re-
balance and instead rely on randomization to achieve per-
formance comparable to that of a balanced tree with high
probability. This strategy greatly simplifies the structure
and keeps operations mostly localized—much as in a con-
current linked list.

The idea with a skip list is to maintain a hierarchy of
ordered linked lists with the lowest layer containing all the
nodes and each layer above containing a subset of the pre-
vious list. Searching the list can start at the top level which
has the fewest nodes. If the key is not found it can move
down a level and start searching from where it left off in the
previous list. In this way it can “skip” over large portions of
the list refining its way down to the key. Pugh has shown [15]
that if the probability of a node appearing in the next layer
up is some fixed p < 1 then the expected cost of search will
be O(logn), with the particular value of p balancing search

costs with storage space.
A skip list implementation requires a source of pseudoran-

dom numbers. While we could keep the state for a random
number generator in a transactional variable, we want to
avoid the overhead of transactional accesses. We also want
to avoid any contention on the state of the number genera-
tor, so we keep a separate state for each thread and ensure
that each is on a separate cache line. Non-transactional mu-
table state is excluded from transactions by simply restrict-
ing the actions available with the STM type to manipulating
TVars, retry, orElse, and the normal Monad operations.
One cannot, for instance, read from an IORef in a trans-
action. If non-transactional state were included, the cur-
rent implementation could deadlock if that state was used to
make the decision to execute retry. This is because retry

is implemented by waiting for a change to one the variables
in the transaction’s read set. The transaction will wake up
only when a change is made to one of those variables. We
use unsafeIOToSTM to perform non-transactional access and
take care not to leak information from the state of the ran-
dom number generator. Note that non-determinism is al-
ready common in transactions, since the schedule of trans-
action execution may determine program outcome.

A skip list node is implemented as a single TStruct with
the key and value in word slots and levels of pointers in
pointer slots. The number of words is fixed in this use of
TStruct while the number of pointers varies from node to
node. Skip list nodes are slightly more complicated then the
red-black tree nodes due to the varying number of levels in
each node. The code is much simpler, however, with the
only difficult aspect being the source of random numbers.

5.3 Cuckoo Hash Table
The Cuckoo hash table [12] is an open addressing hash

structure in which a pair of hash functions is used to give two
locations for a particular key. On insertion if both locations
are full, one of the existing entries will be evicted to make
room for the new entry. The evicted item will then go to its
alternate location, possibly leading to further evictions. If
the chain of evictions is too long, the table is resized. Our
implementation follows the concurrent Cuckoo hash table
described by Herlihy and Shavit [8], with a pair of tables,
one for each hash function.

In a concurrent setting the Cuckoo hash table is appeal-
ing because lookups need to look in only two locations and
deletions need only to additionally change one location. In-
sertions look for a free bucket among the two locations and
often will be done with a small change at that location: up-
dating the size and writing the value into the bucket.

Our TVar-based implementation is structured as an array
of mutable TVars that reference immutable buckets. When
an insertion or deletion happen, a new bucket is made, copy-
ing appropriate entries. In the TStruct-based implementa-
tion, we have an immutable array of pointers to mutable
TStruct buckets. Insertions and deletions simply update a
few entries in the bucket. The TStruct buckets are of fixed
size, containing a size field, keys as words, and values as
pointers.

5.4 Hashed Array Mapped Trie
The Hashed Array Mapped Trie (HAMT) data structure [1]

is commonly used in Haskell in its pure functional form
as the underlying structure in the unordered-containers

package from Johan Tibell for the Map and Set abstrac-
tions [17]. An HAMT avoids several of the usual perfor-
mance problems of tree-like data structures. In a “Trie”
the bits of the key are broken into fixed size chunks of n
bits each. Each chunk is an index for a level of the tree.
The corresponding node at that level can be indexed by the
chunk to find the next node for that key. Nodes can either
be levels or leaves where the levels point to further nodes
and leaves contain key-value pairs. As an example consider
the key 42 = 1010102 in a trie with n = 3 bits per level.
Each node will have 23 = 8 entries with the root indexed by
the first three bits 010 and (if needed) the next level indexed
by 101, the third and sixth entries in the nodes respectively.

The “Hashed” part of the HAMT name indicates that the
key is hashed before indexing to ensure a uniform distri-
bution, avoiding (with high probability) the need for rebal-
ancing. Given a uniform distribution of hash values, levels
should become more and more sparse as one moves down
the tree, leading to the desire for a more compact repre-
sentation. The “Array Mapped” part of the HAMT name
indicates a technique that does just that, by storing a pop-
ulation bitmap with 2n bits and as many pointers to lower
levels as there are bits set in the bitmap. A trie level node
in our example above with two children would have to have
six wasted entries, where the “Array Mapped” scheme would
need only 8 bits to indicate the dead ends. A trade-off with
array mapping is that adding or removing an entry will re-
quire an entirely new node. In the context of immutable data
structures this is expected. There is a lot of opportunity for
intermediate designs that allocate nodes with a bit of extra
space for anticipated growth. In a similar vein, mutation
can be used for removal by marking dead ends rather then
removing nodes. We leave the exploration of these designs
to future work.

5.4.1 The Population Count Instruction
Array mapping can benefit greatly from the popcnt or

“population count” hardware instruction supported in most
current architectures. The instruction counts the number of
bits set to 1 in a word. This allows quick indexing into the
compact array by first masking the bitmap to only contain
set bits that precede the desired index, then counting the
number of those bits set. For example, if we want to look at
the entry in the array at index 4 and our bitmap is 011101012

we will want to look at index 2 in the compact array. We
find that by first masking with 24 − 1 = 000011112 yielding
000001012 then counting set bits with popcnt giving 2. This
2 is the number of exiting entries in the array before our
entry, telling us how many slots in the compact array to
skip before our entry.

5.4.2 Implementation with TVars
We use an existing Haskell implementation of HAMT from

Nikita Volkov found in the stm-containers package [18]
with the minor change of ensuring that insertions of dupli-
cate keys leave the existing value rather than replacing it
(thus allowing the transaction to remain read-only). The
layout of the data structure and corresponding code is given
in Figure 6a. Each Node is a sum type with a Nodes con-
structor for levels and two leaf constructors, one for single
entries and the other for entries with hash collisions. Mu-
tation in this structure happens only at the TVar referenced
in the Nodes constructor. The bitmap for array indexing is

given in the Indices typed field in WordArray.
In the TStruct based implementation, nodes are either a

WordArray level or SizedArray leaf similar to the code in
Figure 6b. Mutation happens in the array part when, for
instance, a child is replaced by an expanded node on insert
and the parent reference is updated to the new child. To
remove unneeded indirection in this structure we implement
the whole node as a TStruct with an explicit tag field as
seen in Figure 6b.

5.4.3 HAMT Comparison
The HAMT falls somewhere in between the red-black tree

and skip list in complexity. Most of the difficult aspects of
HAMT lie in the data representation. Here TStruct makes
things somewhat simpler although (in the absence of com-
piler support) with significantly less safety. HAMT nodes
come in several forms and sizes.

6. PERFORMANCE EVALUATION
Results were obtained on a 2-socket, 36-core, 72-thread

Intel Xeon E5-2699 v3 system. To achieve consistent results
we augmented GHC’s thread pinning mechanism to allow
assignment of Haskell execution contexts to specific cores,
and experimented with different assignments as we increased
the number of threads used in our experiments. The best
performance was achieved by first filling all the cores on one
chip then moving to the second chip and finally using the
SMT threads.

6.1 Data Structure Throughput
Our benchmarking work has focused on data structure

steady state throughput performance. Figure 7d shows the
throughput of a mix of operations on a data structure rep-
resenting a set which initially has 50,000 entries. When the
benchmark runs, each thread performs a transaction which
will search for a random key (from a key space of 100,000)
90% of the time, insert a random key 5% of the time, and
delete a random key the remaining 5% of the time. Due
to the mix of operations the structure is expected to keep
its size regardless of the length of the run. Given this and
the size of the key space, we can expect half of insertions
and deletions to follow a read-only (with respect to the
Haskell transaction) path where the entries already exist in
the structure in the case of insertion and the where the en-
tries do not exist in the case of deletion.

For comparison in the HAMT case we include perfor-
mance with a concurrent implementation (ctrie) that uses
compare-and-swap operations on IORefs. Here the TStruct

implementation outperforms the TVar implementation sig-
nificantly, with 4.2 times the throughput of TVar on a single
thread and 6.4 times the throughput of TVar on 36 threads.
Using SMT thread does not benefit total throughput for
TStruct. The skip list and cuckoo hash table implemen-
tations also show benefits for TStruct, though smaller in
magnitude.

Our red-black tree does not perform as well with TStruct.
Several factors may be causing this including false conflicts
introduced by TStructs or the benefits being limited by the
small constant size of nodes and outweighed by the increased
overhead. One significant difference between where TStruct

works and does not is that, due to the design, HAMT nodes
are only ever mutated in one field in each transaction. In
future work we hope to gain a more detailed understanding

...

entry

size

SizedArray

array

hash

tag=Leaves

Node

...

entry

size

SizedArray

array

bitmap

WordArray

value

watch-list

version

TVar

tvar

tag=Nodes

Node

...

entry

size

SizedArray

array

bitmap

WordArray

value

watch-list

version

TVar

tvar

tag=Nodes

Node

data Node a = Nodes (TVar (WordArray a))
| Leaf Hash a
| Leaves Hash (SizedArray a)

data WordArray a = WordArray
Bitmap (Array (Node a))
data SizedArray a = SizedArray Size (Array a)

(a) The TVar-based node data type.

...

entry

hash

size

tag=1

watch-list

version

lock-count

lock

SizedArray

...

entry

bitmap

size

tag=0

watch-list

version

lock-count

lock

WordArray

...

entry

bitmap

size

tag=0

watch-list

version

lock-count

lock

WordArray

data Node a = WordArray Size Bitmap (Array (Node a))
| SizedArray Size Hash (Array a)

(b) The TStruct-based node data type.

Figure 6: The TVar-based (a) and TStruct-based (b) node data types and diagrams showing two level nodes, and a leaf node
of an HAMT.

of the reasons behind the performance of our various data
structures.

7. FUTURE WORK
While we are seeing significant performance improvements

for some applications with TStruct, we are not satisfied with
the code that must be written to achieve this. Compiler sup-
port for expressing transactional structs could improve the
quality of generated code and provide better safety and sim-
plicity to programmers. As mentioned in Section 3.3.1, non-
transactional initialization of TStructs can be guaranteed
safe in common scenarios. In future work we will explore an
API that exposes these accesses safely. Specifically we hope
to build on a recent proposal by Simon Marlow to add data
types with mutable fields [?]. In this proposal data con-
structor with mutable fields are IO, ST, or STM actions while
pattern matching on a constructor introduces references to
mutable fields rather then values. These references are sim-
ply the pairing of an offset with a pointer to the constructor
heap object. Additional actions allow access for reading and
writing to fields within the proper context. Simple exten-
sions to GADT syntax give a clean way to express these data
types.

We also hope to explore more data structures that can
benefit from transactional structs. This will likely lead to ex-
ploring improved transactional array support as well. There
are several variations to the HAMT data structure that we
hope to explore, given that we have more freedom to per-
form mutation in the context of STM and TStructs. For

instance, we may be able to avoid allocating new nodes and
copying when an item is deleted by instead marking the en-
try as deleted with a sentinel value or a deletion bitmap. We
could also explore over-allocating some levels of the HAMT,
trading compact nodes for the expectation that nodes high
in the tree will later become saturated. Of course these may
lead to poor performance due to increased conflicts.

Another direction we have begun to explore is TStruct

alignment. By aligning all allocations and GC copy oper-
ations of TStruct heap objects we can avoid false conflicts
that increase inter-core communication and degrade perfor-
mance. This trades off some space to internal fragmentation,
but may improve performance for some concurrent work-
loads.

Our original motivation for TStruct was to improve per-
formance of a hybrid transactional memory implementation
where transactions are first attempted using hardware trans-
actional memory. Along the way we discovered that TStruct
improved performance of software-only transactional mem-
ory greatly on some data structures. In future work we hope
to find ways to use hardware transactions to yield additional
performance improvements, and to understand the factors
that lead to good and poor performance of Haskell code in
hardware transactions.

A concern that we have with our work is how well it
translates to performance improvements in real-world ap-
plications. Few existing applications make significant use of
STM data structures, even though STM is widely used for
synchronization—retry-based condition synchronization in

1 18 36 72

0

1

2

3
·107

Threads

O
p

er
a
ti

o
n
s

p
er

se
co

n
d

TVar TStruct

(a) Red-black tree.

1 18 36 72

0

1

2

3
·107

Threads

O
p

er
a
ti

o
n
s

p
er

se
co

n
d

TVar TStruct

(b) Skip list.

1 18 36 72

0

2

4

6

·107

Threads

O
p

er
a
ti

o
n
s

p
er

se
co

n
d

TVar TStruct

(c) Cuckoo Hash Table.

1 18 36 72

0

1

2

3
·108

Threads

O
p

er
a
ti

o
n
s

p
er

se
co

n
d

TVar TStruct CTrie

(d) HAMT.

Figure 7: Operations on data structures with roughly 50,000 entries where 90% of the operations are lookups and the rest are
split between insertions and deletions (note the differing scales on the y-axis).

particular. It is unclear if STM data structures are avoided
simply due to their poor performance. Applications will typ-
ically use a pure functional data structure and gain mutation
by referring to the whole structure from a single mutable cell.
Threads then access this cell with appropriate synchroniza-
tion (usually atomicModifyIORef) to update the reference
to a new data structure. This pattern works well on low
core counts, but fails to scale as the single cell inevitably
becomes a bottleneck [11].

8. CONCLUSION
We have shown that we can extend GHC’s fine-grain lock-

ing STM to support transactional structures. Given this
support we have explored the implementation of several data
structures and their performance on microbenchmarks on a
large multicore machine. On the hashed array mapped trie
in particular this leads to substantial performance improve-
ments.

9. REFERENCES
[1] P. Bagwell. Ideal hash trees. Technical report, 2001.

http://lampwww.epfl.ch/papers/idealhashtrees.pdf.

[2] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec:
Streamlining STM by abolishing ownership records. In
Proc. of the 15th ACM Symp. on Principles and
Practice of Parallel Programming (PPoPP), pages
67–78, Bangalore, India, Jan. 2010.

[3] K. Fraser. Practical lock-freedom. PhD thesis,
University of Cambridge Computer Laboratory, 2004.

[4] K. Fraser and T. Harris. Concurrent programming
without locks. ACM Trans. on Computer Systems
(TOCS), 25(2):5, 2007.

[5] T. Harris, S. Marlow, S. Peyton Jones, and
M. Herlihy. Composable memory transactions. In
Proc. of the 10th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPoPP), pages
48–60, Chicago, IL, June 2005.

[6] T. L. Harris, J. R. Larus, and R. Rajwar.
Transactional Memory. Morgan & Claypool, San
Francisco, CA, second edition, 2010.

[7] M. Herlihy and E. Koskinen. Transactional boosting:
A methodology for highly-concurrent transactional
objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 207–216, New York,
NY, USA, 2008. ACM.

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc.,
2008.

[9] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
Stamp: Stanford transactional applications for
multi-processing. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on,
pages 35–46. IEEE, 2008.

[10] A. Natarajan, L. H. Savoie, and N. Mittal. Concurrent
Wait-Free Red Black Trees, pages 45–60. Springer
International Publishing, Cham, 2013.

[11] R. R. Newton, P. P. Fogg, and A. Varamesh. Adaptive
lock-free maps: Purely-functional to scalable. In
Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015,
pages 218–229, New York, NY, USA, 2015. ACM.

[12] R. Pagh and F. F. Rodler. Cuckoo Hashing, pages
121–133. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[13] A. Prokopec, P. Bagwell, and M. Odersky.
Cache-aware lock-free concurrent hash tries. Technical
report, 2011.
https://infoscience.epfl.ch/record/166908.

[14] A. Prokopec, N. G. Bronson, P. Bagwell, and
M. Odersky. Concurrent tries with efficient
non-blocking snapshots. In Acm Sigplan Notices,
volume 47, pages 151–160. ACM, 2012.

[15] W. Pugh. Skip lists: A probabilistic alternative to
balanced trees. Commun. ACM, 33(6):668–676, June
1990.

[16] M. Schröder. ctrie: Non-blocking concurrent map,
2013. https://hackage.haskell.org/package/ctrie.

[17] J. Tibell. unordered-containers: Efficient
hashing-based container types, 2012. https:
//hackage.haskell.org/package/unordered-containers.

[18] N. Volkov. stm-containers: Containers for stm, 2016.
https://hackage.haskell.org/package/stm-containers.

http://lampwww.epfl.ch/papers/idealhashtrees.pdf
https://infoscience.epfl.ch/record/166908
https://hackage.haskell.org/package/ctrie
https://hackage.haskell.org/package/unordered-containers
https://hackage.haskell.org/package/unordered-containers
https://hackage.haskell.org/package/stm-containers

	Introduction
	Background
	STM Interface
	STM Implementation

	Adding Transactional Structs
	Indirection with TVars
	Mutable Unboxed Values
	Implementation Details
	Haskell API
	Run-time System Details

	STM Correctness with TStruct
	Commit Overview
	TVar Commit
	The need for Read Check
	TStruct Commit
	Correctness

	Data Structures with TStruct
	Red-Black Tree
	Skip List
	Cuckoo Hash Table
	Hashed Array Mapped Trie
	The Population Count Instruction
	Implementation with TVars
	HAMT Comparison

	Performance Evaluation
	Data Structure Throughput

	Future Work
	Conclusion
	References

