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Generality and Speed in Nonblocking Dual Containers
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Nonblocking dual data structures extend traditional notions of nonblocking progress to accommodate partial
methods, both by bounding the number of steps that a thread can execute after its preconditions have been
satisfied and by ensuring that a waiting thread performs no remote memory accesses that could interfere
with the execution of other threads. A nonblocking dual container, in particular, is designed to hold either
data or requests. An insert operation either adds data to the container or removes and satisfies a request; a
remove operation either takes data out of the container or inserts a request.

We present the first general-purpose construction for nonblocking dual containers, allowing any nonblock-
ing container for data to be paired with almost any nonblocking container for requests. We also present new
custom algorithms, based on the LCRQ of Morrison and Afek, that outperform the fastest previously known
dual containers by factors of four to six.
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1. INTRODUCTION

A concurrent container object (e.g., a queue) that supports insert (enqueue) and re-
move (dequeue) methods must address this question: what happens if the element one
wants to remove is not present? The two obvious answers are to wait for data within
the remove method or to return an error code (or signal an exception). The former
option appears—at least on the face of it—to make remove a blocking operation; the
latter forces a thread that really needs to wait to spin outside the container and to
perform a potentially unbounded number of fruitless remove operations that can lead
to significant contention.

Dual data structures [Scherer and Scott 2004] extend the definition of nonblocking
programs to accommodate partial methods—those that must wait for a precondition
to hold. Informally, a partial method is replaced with a total request method that
either performs the original operation (if the precondition holds) or modifies the data
structure in a way that makes the caller’s interest in the precondition (its request)
visible to subsequent operations.
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Compared to a traditional method that returns an error code, forcing the caller to
retry the operation in a loop, dual data structures offer two important advantages. First,
the data structure itself obtains explicit control over the order in which requests will
complete when preconditions are satisfied (e.g., it might give priority to the operation
whose request was the first to linearize). Second, requests can (and, in the original
formulation, must) be designed in such a way that threads with pending requests
impose no burden on active threads: each waiting thread can spin, for example, on a
separate local flag.

Related Work. In addition to the original dual queue and dual stack of Scherer and
Scott [2004] and Scherer et al. [2005] describe a dual exchanger and both “fair” and
“unfair” synchronous queues [Scherer et al. 2009] (the “unfair” version is actually a
stack). Threads in an exchanger “pair up”: each thread provides an object to a com-
mon exchange method and returns with the object provided by another thread. In a
synchronous queue, producers and consumers pair up: enqueue and dequeue meth-
ods both wait for a matching operation of the opposite polarity. Both the exchanger
and the synchronous queues are included in the java.util.concurrent standard library;
Scherer et al. [2009] report that their use in the Executor runtime package improved
the performance of task dispatch by as much as an order of magnitude.

Other synchronous queues include the flat combining algorithm of Hendler et al.
[2010a] and the elimination-diffraction trees of Afek et al. [2010]. The authors of the
former report it to be faster than the latter under most circumstances. Given the sym-
metry between producers and consumers, the size of a synchronous queue is bounded
by the number of threads, and the flat combining synchronous queue in particular is
optimized to exploit this symmetry for throughput (rather than fairness). We focus in
this article on traditional “asymmetric” (thus, also nonsynchronous) queues, in which
dequeue operations wait for a matching but not vice versa. As a basis for comparison
in benchmarking tests (Section 5), we have constructed an asymmetric flat combining
queue using the methodology of Hendler et al. [2010a].

A nonblocking, nonsynchronous queue can be of bounded size if producers fail when it
is full, just as consumers fail when it is empty. Such queues are often used for message
passing. Early (nondual) examples were designed to leverage the “combinability” of
fetch-and-add (FAA) or fetch-and-increment (FAI) instructions [Freudenthal and Gottlieb
1991; Gottlieb et al. 1983], thereby avoiding serial bottlenecks. More recent dual
examples have been optimized for modern processors; these include the PTLQueue of
Dice [2014] and the BNPVB family of Pasetto et al. [2012]. None of these algorithms is
nonblocking: each has a timing “window” in which a delay in one thread can obstruct
the progress of others, despite the fact that progress should, in principle, be possible.

Past work has also explored unbounded FAA/FAI–based queues. An early (blocking)
example can be found in the work of Wilson [1988]; more recent examples include the
blocking HTQueue of Orozco et al. [2012] and the nonblocking (lock-free) LCRQ of
Morrison and Afek [2013]. Further citations and commentary can be found in a recent
article by Dice [2014]. None of these algorithms is dual: each requires a method with
a false precondition to back out and retry. We will return to unbounded nonblocking
FAA/FAI–based queues in Section 4, where we show how to make them dual.

After a brief review of dualism in Section 2, the remainder of this article discusses
new implementations of dual containers. Section 3 (earlier versions of which ap-
peared as a brief announcement [Izraelevitz and Scott 2014a] and a technical report
[Izraelevitz and Scott 2014c]) introduces a generic construction for building dual
containers out of other concurrent containers. Section 4 (also a previous brief an-
nouncement [Izraelevitz and Scott 2014b] and a technical report [Izraelevitz and Scott
2014d]) presents FIFO dual queues that significantly improve on the performance
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of prior structures. We present performance results in Section 5 and conclude in
Section 6. Source code is available at cs.rochester.edu/research/synchronization/.

2. BACKGROUND AND TERMINOLOGY

“Dual” data structures take their name from the ability of the structure to hold either
data or, alternatively, requests for data (antidata).

In a queue, where any available datum is acceptable to a dequeue-er, a quiescent
state will always find the structure empty, populated with data, or populated with
antidata. A mix of data and antidata can occur only when the structure is in transition
and some operation has yet to complete (i.e., to return or to wait for data).

Dualism implies that a thread calling the public insert method may either insert
data or remove antidata “under the hood.” Likewise, a thread calling the public remove
method may either remove data or insert antidata. When discussing dual algorithms,
we will thus refer to the polarity of both threads and the structure, with a positive
polarity referring to data and a negative polarity referring to antidata. Thus, a thread
calling the public insert method has a positive polarity; it will either insert its data into
a positive container or remove antidata from a negative container. Conversely, a thread
calling the public remove method has a negative polarity; it will either remove data from
a positive container or insert antidata into a negative container. The only asymmetry—
an important one—is that (in this article at least) only negative threads will ever wait:
calls to the public insert are always total. Positive and negative operations are said
to correspond when the former provides the datum for the latter; at the linearization
point of whichever operation happens last, the two operations are said to mix.

In the framework of Scherer and Scott [2004], a nonblocking dual container object
should export three public methods, all of which are total. The insert method places
data into the container or, if antidata is available, satisfies and removes it. The remove_
request method removes a datum from the container or, if data are not available,
inserts a request (antidatum) instead. Either way, remove_request returns a unique
ticket value that corresponds to the datum or antidatum. The remove_followup method
takes a ticket as argument. If the ticket corresponds to an already removed datum, the
method returns this datum and is said to be successful. If the ticket corresponds to an
antidatum that has not yet been satisfied, the operation returns a distinguished NULL
value and is said to be unsuccessful. If the ticket corresponds to an antidatum that has
been satisfied, the operation returns the datum used to satisfy it and is again said to
be successful.

In practice, it is generally desirable to provide a composite remove operation whose
internal behavior comprises a remove_request followed by a potentially unbounded
sequence of remove_followups, all but the last of which (if there is one) are unsuccessful.
To be considered correct, the remove_followup sequence must satisfy two key properties.
First, each unsuccessful remove_followup must refrain from performing any remote
memory accesses—it must not read any location that is written concurrently by any
other thread or write any location that is read or written concurrently by any other
thread. Second, when a matching insert operation occurs, a waiting thread must wake
up “right away.” That is, suppose that insert operation I in thread t matches successful
remove_followup operation S in thread u. No other operation (in particular, neither
an unsuccessful remove_followup in u nor a successful remove_followup in any other
thread) is permitted to linearize between I and S.

3. GENERIC CONSTRUCTION FOR NONBLOCKING DUAL CONTAINERS

To the best of our knowledge, all published nonblocking dual containers have shared
a common design pattern: at any given time, the structure holds either data or an-
tidata, depending on whether there have been more inserts or removes in the set of
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operations completed to date (in some cases, the structure may also contain already
satisfied antidata, whose space has yet to be reclaimed). As the balance of completed
operations changes over time, the structure “flips” back and forth between the two
kinds of contents.

While successful, this design strategy has two significant drawbacks. First, adapting
an existing container to make it a dual structure is generally nontrivial: not only must
an operation that flips the structure linearize with respect to all other operations, if it
satisfies a request, it must also remove the antidatum and unblock the waiting thread
as a single atomic operation (otherwise, there will be a window in which a delay in
the positive thread can block the negative thread indefinitely). Second, since the same
structure is used to hold either data or antidata, the same ordering discipline will
generally be applied to both. Scherer [2005] designed, but did not publish, what he
called “quacks” and “steues,” with First In, First Out (FIFO) ordering for data and
Last In, First Out (LIFO) ordering for antidata, or vice versa. These were implemented
with a single structure—a linked list—and a change of convention on whether to
insert at the head or the tail. Unfortunately, this approach does not generalize to other
container structures.

In this section, we introduce a new construction that eliminates the drawbacks of
previous approaches by joining a pair of containers—one for data and one for anti-
data. Any existing concurrent container can be used for the data side; on the antidata
side, we require that the remove method be partitioned into a peek method and a
separate remove_conditional. We introduce our construction in Section 3.1. It requires
no hardware support beyond the usual load, store, and compare_and_swap (CAS).
Section 3.2 presents safety and liveness proofs, demonstrating that the construction
correctly merges the semantics of the constituent structures, preserves obstruction
freedom, and avoids any memory contention caused by waiting threads. Section 5.1
presents microbenchmark results, showing reasonable performance for a variety of
combinations of data and antidata structures.

3.1. The Generic Dual Construction

As suggested in the preceding paragraph, we build a nonblocking dual container using
two underlying “subcontainers”: one for data and one for antidata. We maintain the
invariant that, at any given linearization point, at most one of the underlying subcon-
tainers is nonempty. Thus, in a positive operation (i.e., a public insert), we may satisfy
and remove an element from the antidata subcontainer, allowing the thread that is
waiting on that element to return. Alternatively, we may verify that the antidata sub-
container is empty and instead insert into the data subcontainer. (The trick, of course,
is to obtain a single linearization point for this logically two-part operation.) In a nega-
tive operation, we either remove and return an element from the data subcontainer or
verify that the data subcontainer is empty and insert into the antidata subcontainer.

The outer container is said to have positive polarity when its data subcontainer is
nonempty; it has negative polarity when its antidata subcontainer is nonempty. Its
polarity is neutral when both subcontainers are empty.

3.1.1. Supported Subcontainers. We assume a conventional API for the data subcon-
tainer. The insert method takes a datum (typically a pointer) as argument, and returns
no useful value. The remove method takes no argument; it returns either a previ-
ously inserted datum or an EMPTY flag. More specifically, we assume that the data
subcontainer maintains a total order <+ on its elements, such that in any realizable
linearization order in which all the arguments to insert are unique, (1) remove re-
turns EMPTY whenever the number of previous remove operations equals or exceeds
the number of previous insert operations; (2) if remove returns a, then there exists a
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previous insert operation that provided a as argument, there is no previous remove
operation that returned a, and there is no b such that b was provided by a previous
insert operation, b was not removed by any previous remove operation, and b<+a. That
is, remove always returns the smallest datum present under <+.

For the antidata subcontainer, we assume a similar insert method, which takes an
antidatum as argument, and a similar total order <− on elements. We require, however,
that removal be partitioned into a pair of methods. The peek method takes no argument;
it returns an antidatum and a special key. At the time of a peek call that returns (v, k),
v must be the smallest antidatum present under <−. The key can then be passed to a
subsequent call to remove_conditional. That call will remove the value associated with
its key argument so long as the value v associated with k is still the smallest under <−;
otherwise, remove_conditional has no effect. In our executable code, remove_conditional
returns a Boolean indicating whether v was actually removed and thus can be garbage-
collected; we ignore this value in the pseudocode.

Assuming that the operations of the subcontainers are linearizable and nonblocking,
we will show in Section 3.2 that the outer container is obstruction free. As it turns
out, many nonblocking container objects can be converted easily to support peek and
remove_conditional. We experimented with converted versions of the Treiber stack
[Treiber 1986], the M&S queue [Michael and Scott 1996], and the H&M sorted list
[Harris 2001; Michael 2002]. Appendix A gives pseudocode for the converted Treiber
stack.

3.1.2. Placeholders. As noted earlier, our construction requires that we be able to verify
that one subcontainer is empty and insert into the other, atomically. To accomplish
this task, we introduce the concept of placeholders. Instead of actually storing data
or antidata in a subcontainer, we instead store a pointer to a placeholder object.
Each placeholder contains a datum or an antidatum, together with a small amount of
metadata. Specifically, a placeholder can be in one of four states: INVALID, ABORTED,
VALID, or SATISFIED. An INVALID placeholder indicates an ongoing operation—the
associated thread has begun to check for emptiness of the opposite subcontainer, but
has not yet finished the check. An ABORTED placeholder indicates that the associated
thread took too long in its emptiness check and any information it has regarding the
status of the opposite subcontainer may be out of date. A VALID placeholder indicates
that the associated thread has completed its emptiness check successfully and has
inserted into the subcontainer of like polarity. Finally, a SATISFIED placeholder
indicates that the associated data or antidata has been “mixed” with antidata or data
from the corresponding operation.

On beginning a positive or negative operation on the outer container (Figure 1), we
first store an INVALID placeholder in the subcontainer of like polarity. We then check
for emptiness of the opposite subcontainer by repeatedly removing elements. If we find
a VALID placeholder, we mix it with our own data or antidata, transition it from VALID
to SATISFIED, and return, leaving our own INVALID placeholder behind. If we find an
INVALID placeholder, we abort it, indicating that it has been logically removed from its
subcontainer and that any information the owning thread may have had regarding the
polarity of the outer container is now out of date. Finally, if we discover that the opposite
subcontainer is empty, we can go back to our stored placeholder and attempt to validate
it, completing our operation. If we find, however, that our placeholder has been aborted,
then some thread of opposite polarity has removed us from our subcontainer. If that
left our subcontainer empty, the other thread may have validated its own placeholder
and returned successfully. We must therefore retry our operation from the beginning.
The possibility that two threads, running more or less in tandem, may abort each
other’s placeholders—and both then need to retry—is why our construction is merely
obstruction free, rather than lock free.
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Fig. 1. Execution of the generic dual container.

3.1.3. Wakeup. One detail remains to be addressed. While a partial method of a dual
data structure may block when a precondition is not met, the definitions of Section 2
place strict limits on this blocking. In particular, if a thread inserts a datum into a
container, and another thread is waiting for that datum, the waiting thread must wake
up “right away.” (This requirement is formalized as Theorem 3 in Section 3.2.) The
description of our construction presented earlier does not yet meet this requirement: it
admits the possibility that a positive thread will remove a placeholder from the negative
subcontainer and then wait an unbounded length of time (e.g., due to preemption by the
operating system) before actually satisfying the placeholder and allowing its owner to
return. In the meantime, an unbounded number of other operations (of either polarity)
may complete.

We term this issue the preemption window. We close it with the peek and re-
move_conditional methods. A positive thread, instead of simply removing a placeholder
from the negative subcontainer, first “peeks” at that placeholder (the one that is least
under <−) and publicly posts its intent—to satisfy the placeholder with a specific
value—as the active request. After posting its request, the active thread attempts to
fulfill it by satisfying the placeholder. Only then does it remove the placeholder from
the subcontainer and take down the public request. Any other positive thread must
check the active request field and help complete the request of the active thread before
posting its own request. By updating placeholders while they are still in the negative
subcontainer, we order all waiting threads, guaranteeing that they are able to return
without any further delay.

As we shall see in Section 5.1, closing the preemption window has a nonnegligible
negative impact on performance. If all one wants in practice is a fast shared buffer, a
“not quite nonblocking” version of our construction, without the active request field,
may actually be preferred.

3.1.4. Pseudocode. Pseudocode for the generic dual container appears in Figure 2.
For convenience, we assume a sequentially consistent memory model; the ordering
annotations for relaxed models are tedious but straightforward.
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Fig. 2. Pseudocode for the blocking generic dual construction.

A Placeholder tuple (a CAS-able word) contains both a value (datum or antidatum)
and flags to indicate one of the four possible states: INVALID, ABORTED, VALID, and
SATISFIED. Given the almost complete symmetry of positive and negative operations,
we implement insert and remove as trivial wrappers around a single remsert method.
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The polarity argument distinguishes positive and negative operations. The val argument
provides data for positive operations; it is NULL for negative operations. The nb flag
controls portions of the code that differ depending on whether we wish to close the
preemption window and thus be fully nonblocking. Subcontainers are assumed to have
been initialized before passing them to the GDual constructor.

On entering the main loop of remsert, we allocate memory for an INVALID (not yet
validated) placeholder tuple, which we then store in the subcontainer whose polarity
matches that of the current operation. On entering the oppositeCheck function, we
attempt to remove (or peek at) an “opposite placeholder” (oph) from the other sub-
container. Assuming that such a placeholder exists, we guess that it has not yet been
validated and we attempt to abort it. (As an optimization [not shown here], we could
peek at its state before trying the CAS.) If the abort attempt fails in the nonblock-
ing variant of the construction, oph could be in any of the other three states—VALID,
SATISFIED, or ABORTED—since other threads may have access to it via peek. We first
guess that it is VALID and attempt to satisfy it, remove it from its container, and return.
If that attempt fails, oph is either SATISFIED or ABORTED; since it can no longer mix,
we also attempt to remove it.

If our original attempt to abort oph fails in the blocking variant of the construction,
oph’s state can only be VALID since only the owning thread and we, the remover, have
access to it. Consequently, we can “mix” with its contents (line 102) and return.

On discovering an empty opposite container, we break out of the empty check and
attempt to validate our own placeholder, using CAS to resolve the race with any thread
that removes or peeks at our placeholder. If the CAS succeeds, we have committed our
operation and can either return (if we are a positive thread) or wait for our placeholder
to be satisfied by a positive thread (if we are a negative thread). If the validation CAS
fails, we have encountered a conflict with another thread and have been aborted. Since
the opposite container may not be empty anymore, we loop back to the start of the
outer loop.

In the nonblocking variant, we must do additional work to close the preemption
window—work that manifests itself as a more complicated oppositeCheckNB function.
As noted earlier, the preemption window occurs only when we are satisfying waiting
threads—that is, when a positive thread operates on a negative structure.

At the beginning of its nonblocking opposite check, a positive thread preallocates
a Request object, a small struct containing all information for mixing with antidata.
On entering the main loop of the check, it first checks the activeReq field. A non–NULL
value indicates an ongoing operation. If necessary, the thread assists the active request
and clears the field.

If the thread discovers no active request, it calls peek to look at the antidata subcon-
tainer. If peek returns EMPTY the check is complete – the subcontainer is indeed empty.
However, if peek returns a placeholder, the positive thread will attempt to satisfy it. To
do so, it writes the placeholder and key it received from peek into its Request object,
then posts the now fully specified Request object to the outer container’s activeReq
field. Having posted the request, the thread helps itself in completing the request.

The helpRequestNB function takes a Request object and attempts to do the work it
contains. After attempting to mix the desired data with antidata, the function takes
down the active request and removes (if possible), the now irrelevant placeholder. It
returns the final state of the placeholder, either ABORTED or SATISFIED. The former
indicates that the request failed due to an INVALID placeholder;thus, the thread must
try again. The latter indicates that the placeholder was indeed satisfied.

However, an ambiguity regarding the SATISFIED signal remains: it is possible that
the placeholder was satisfied by a different thread earlier, but the placeholder was
not removed due to a remove_conditional failure. To deal with this case, the satisfying
thread stores a pointer to the satisfying Request object. Since Request objects are not
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Fig. 3. Additional pseudocode for the nonblocking construction.

reclaimed until all references to them are lost, this pointer serves as a unique identifier
for the active request. It allows the current thread to determine whether to return from
oppositeCheckNB or to continue looking for placeholders.

Storage Management. As is usual in concurrent structures, we must coordinate across
threads to determine when it is safe to free data. For the blocking variant, placeholders
are managed by using a counterfield to determine when both the inserter and remover
are done with the object. When a thread discovers that it is the second to complete, it
frees the object. In the nonblocking variant of the construction, an arbitrary number
of threads can gain access to a placeholder via peek. We therefore resort to hazard
pointers [Michael 2004] (not shown in the pseudocode) for storage reclamation. For
efficiency, we maintain thread-local pools of available placeholders.

3.2. Correctness

In this section, we provide safety and liveness proofs for nonblocking dual containers
built using our generic construction. We assume that the underlying containers
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are known to be linearizable and nonblocking and that they support the operations
described in Section 3.1.1 with subcontainer-specific ordering disciplines <+ and <−.
To simplify the presentation, we assume not only that all data values are unique
(clearly they could be made so by including a thread id and serial number) but also
that the values include any information (e.g., thread priority) needed to drive the <+
and <− relations.

As described in Section 2, we require an interface whose remove operation is paired
with explicit remove_request and remove_followup operations as opposed to a com-
bined remove. We consider only well-formed concurrent histories, in which the calls
to a given dual container in any given thread subhistory are a prefix of some string
in (i, r u∗s)∗, where i is an insert operation, r is a remove_request, u is an unsuccess-
ful remove_followup on the ticket returned by the previous r, and s is a successful re-
move_followup on that ticket. To cast our construction in this mold, we make four trivial
modifications to the pseudocode of Figure 2: (1) rename remove to be remove_request;
(2) modify the code at line 105 to return a ticket containing oph; (3) modify the code at
line 65 to return a ticket containing ph; and (4) create a tiny remove_followup method
that inspects the ticket and returns the val field of the placeholder therein.

3.2.1. Safety. To prove the safety of our construction, we need to identify desired
sequential semantics, choose linearization points for our operations, and demonstrate
that any realizable parallel execution has the same observable behavior as a sequential
execution performed in linearization order.

The Two-Order Container. Since dualism is a parallel concept that maps inperfectly
to sequential programming, we must invent a somewhat artificial object with which
to demonstrate equivalence. We call this object a two-order container (TOC). Like
our generic dual container, the TOC comprises positive and negative subcontainers,
with respective ordering relations <+ and <−. In this sequential case, however, both
subcontainers provide only the standard insert and remove methods.

The TOC exports insert, remove_request, and remove_followup methods. The TOC
is said to be empty if its history to date includes an equal number of insert and
remove_request operations. It is said to be positive or negative if its history includes an
excess of insert or remove_request operations, respectively. The remove_request method
creates an antidatum, which contains both a slot into which a data value can be writ-
ten and whatever other information is required to drive the <− relation. If the TOC is
positive, remove_request removes the smallest datum, according to <+, from the pos-
itive subcontainer and writes it into the antidatum. If the TOC is negative or empty,
remove_request inserts the antidatum into the negative subcontainer. In either case, it
returns a ticket containing a reference to the antidatum. The insert method takes a da-
tum as argument. If the TOC is positive or empty, insert adds its datum (and any other
information needed to drive <+) to the positive subcontainer; otherwise, it removes
the smallest antidatum, according to <−, from the negative subcontainer, and writes
its datum into it. The remove_followup method takes a ticket (antidata reference) as
argument; it returns the data value written in the antidatum, or NULL if there is none.

A successful remove_followup—one that returns non-NULL, is said to match the
insert that provided its value. So, too, are the remove_request that returned the
remove_followup’s ticket, and any intervening unsuccessful remove_followups that
were also passed that ticket. Similarly, the insert is said to match the successful
remove_followup, its remove_request, and any unsuccessful remove_followups. We
consider only well-formed sequential histories—those in which every ticket passed to
remove_followup was returned by a previous remove_request, and no ticket is passed
to remove_followup twice if the earlier call was successful.
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Linearization Points. To prove the safety of our generic dual container (GDC), it
suffices to show that in any realizable concurrent history it is possible to identify
linearization points (each between the call and return of its operation) such that the
history has the same observable behavior (i.e., return values) as a sequential execution,
in linearization order, of the same operations on a TOC. To minimize confusion, we
consider only the case in which the nonblocking flag is true; therefore, nb is true (line 40)
if and only if the current outer-level operation is an insertand thus may need to satisfy
a waiting thread.

Our linearization points are dynamic and chosen in retrospect. For simplicity, we
consider only GDC histories in which all operations have completed. (The extensions
needed for uncompleted operations are tedious but straightforward.) We assume that
the history includes all instructions performed within operations of the underlying
nonblocking containers and that the linearization points of these operations have
already been identified. Working through the history in time order, we apply the
following rules:

(1) If a call to satisfy succeeds at line 187, we linearize its operation at the linearization
point of the active request’s peek that was called at line 141.

(2) If an operation returns a validated data placeholder from line 105, we linearize
the operation at the linearization point of the already-completed remove that was
called at line 90.

(3) If a peek at line 141 or a remove at line 90 returns EMPTY, we consider the
current operation and all other operations of the same polarity that have inserted
a placeholder into their subcontainer but have not yet linearized. Among these, we
select all those that successfully validate their placeholder somewhere later in the
history. (Any that have already validated their placeholders will already have been
linearized, by this same rule.) We then linearize all the selected operations at the
subcontainer linearization point of the current peek or removein the order in which
their respective line-49 inserts linearized.

A bit of study confirms that these three cases cover all possible paths through the code.
The trivial remove_followup method, not shown in Figure 2, linearizes on its load of the
val field of the placeholder referred to by its ticket.

The intuition behind the third, admittedly complicated, rule is that in-flight opera-
tions that will ultimately succeed at inserting a validated placeholder into a subcon-
tainer should linearize in insertion order when the opposite-polarity subcontainer is
known to be empty.

THEOREM 1 (LINEARIZABILITY). Any realizable well-formed history of the GDC contain-
ing only completed operations is equivalent to a legal well-formed history of the TOC.

PROOF. Inspection of the code in Figure 2 confirms that, as in the TOC, every insert or
remove_request operation either inserts a subsequently validated placeholder into the
like-polarity subcontainer or mixes with and removes (or verifies the removal of) a vali-
dated placeholder from the opposite polarity subcontainer (and never both). Let us refer
to operations that insert subsequently validated placeholders as leading operations,
and to operations that mix with an existing validated placeholder as trailing operations.

Whenever a subcontainer is empty, the history of that subcontainer must (by as-
sumption of correctness of the subcontainers) include an equal number of like-polarity
(leading) and opposite-polarity (trailing) operations. Whenever a subcontainer is
nonempty, the history of that subcontainer must include an excess of like-polarity
(leading) operations.

ACM Transactions on Parallel Computing, Vol. 3, No. 4, Article 22, Publication date: March 2017.



22:12 J. Izraelevitz and M. L. Scott

Our linearization procedure arranges, by construction, for every leading operation
to linearize at a point at which the subcontainer of opposite polarity is empty, and
for every trailing operation to linearize at a point at which the subcontainer of op-
posite polarity is nonempty. It is easy to show by induction that the GDC linearizes
a leading operation if and only if the number of previously linearized like-polarity
operations equals or exceeds the number of previously linearized opposite-polarity
operations; it linearizes a trailing operation if and only if the number of previously lin-
earized opposite-polarity operations exceeds the number of previously linearized like-
polarity operations. Moreover—again by construction of the linearization procedure—
operations that insert and remove (eventually) validated placeholders in subcontainers
linearize in the order of the subcontainer operations, and the GDC duplicates the se-
mantics of the TOC.

3.2.2. Liveness and Contention Freedom. Theorem 2 asserts that the methods of the GDC
are obstruction-free. Theorems 3 and 4 assert additional properties required of non-
blocking dual data structures [Scherer and Scott 2004].

THEOREM 2 (OBSTRUCTION FREEDOM). If variable nonblocking is true (line 40) and
arguments dc and ac refer to correct nonblocking containers (line 23), then the generic
dual container is indeed obstruction free.

PROOF. Aside from the spin at line 65, which we eliminated in favor of repeated
calls to a remove_followup method, the code of Figure 2 contains only three loops.
The oppositeCheck and oppositeCheckNB loops (lines 89 and 134, respectively) remove
elements repeatedly from a finite container and terminate when it is empty. The latter
can also repeat due to contention with another thread on the activeRequest field; this
manifests as failure of the CAS on line 151, indicating that the other thread is making
progress. The remsert loop (line 47) repeats only when the CAS at line 60 fails due
to contention with another thread. In the absence of such contention, all operations
complete in bounded time.

THEOREM 3 (IMMEDIATE WAKEUP). If a thread A performs an unsuccessful re-
move_followup operation, uA, and some other thread B performs a successful re-
move_followup operation, sB, between A’s remove_request , rA, and uA, then rB <− rA

or iB linearizes before rA, where iB is the insert operation that matches rB.

In other words, if rA and rB are in the antidata subcontainer at the same time and if
rA <− rB, then it is not possible for A to experience an unsuccessful remove_followup
after B has experienced a successful remove_followup. Even more informally, a waiting
thread is guaranteed to wake up immediately after the matching insert.

PROOF. By contradiction: Suppose that we have that iB ≺ sB ≺ uA (the premise),
where ≺ indicates linearization order, but also rA ≺ iB and rA <− rB (the negation
of the conclusion). The existence of uA implies that the GDC is negative after rA’s
linearization point and remains so at least through uA. Thus, if there exists an insert
iA that matches rA, we must have that rA ≺ iA. Moreover, iB must also be a trailing
insert, meaning that rB ≺ iB. Thus, rA and rB are both present as placeholders in the
antidata subcontainer when iB linearizes.

Clearly, if iA exists, it must come before or after iB. If iB ≺ iA or if iA does not exist,
then rA and rB are both present in the antidata subcontainer when iB peeks at it and
sees rB, contradicting the assumption that rA <− rB. If iA ≺ iB, then iA must perform its
remove_conditional on the antidata subcontainer before iB can see rB, and it will satisfy
rB’s placeholder in-between. This, in turn, implies that uA cannot follow sB, another
contradiction.
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THEOREM 4 (CONTENTION FREEDOM). Unsuccessful remove_followup() operations per-
form no remote memory accesses.

PROOF. In the absence of false sharing, the cache line containing the caller’s place-
holder will remain in the local cache until it is written by the satisfying update. Waiting
threads therefore cause no memory contention.

4. FAST DUAL RING QUEUES

While the generic construction of the previous section allows any positive subcontainer
to be paired with almost any negative subcontainer, intuition suggests (and the re-
sults in Section 5 confirm) that the pairing imposes nontrivial overheads. To maximize
performance while preserving dual semantics and nonblocking progress, we have de-
veloped custom, combined structures based on modern FIFO queues.

The dual structures of Scherer and Scott [2004], found in the java.util.concurrent
library, were based on the well-known M&S queue [Michael and Scott 1996] and (for the
“unfair” non-FIFO version) the Treiber stack [Treiber 1986]. Since their development
a decade ago, significantly faster concurrent queues have been devised. Notable among
these is the linked concurrent ring queue (LCRQ) of Morrison and Afek [2013]. While
the linked-list backbone of this queue is borrowed from the M&S queue, each list node is
not an individual element but rather a clever, fixed-length buffer dubbed a concurrent
ring queue (CRQ). Most operations on an LCRQ are satisfied within an individual ring
queue and are extremely fast. The secret to this speed is the observation that when
multiple threads contend with compare-and-swap (CAS), only one thread will typically
succeed, while the others must retry. By contrast, when multiple threads contend with
a FAI instruction, the hardware can (and indeed, does, on an x86 machine) arrange for
all threads to succeed in linear time [Freudenthal and Gottlieb 1991]. By arbitrating
among threads mainly with FAI, the CRQ—and, by extension, the LCRQ—achieves a
huge reduction in memory contention.

Unfortunately, like most nonblocking queues, the LCRQ “totalizes” dequeue opera-
tions by returning an error code when the queue is empty. Threads that call dequeue
in a loop, waiting for it to succeed, reintroduce contention, and their requests, once
data is finally available, may be satisfied in an arbitrary (i.e., unfair) order. In this
section, we describe two dual versions of the LCRQ. In one version, all elements in a
given CRQ are guaranteed to have the same “polarity”—they will all be data or all be
requests (antidata). In the other version, a given CRQ may contain elements of both po-
larities. In effect, these algorithms combine the fairness of Scherer et al.’s M&S-based
dual queues with the performance of the LCRQ. Within a single multicore processor,
throughput scales with the number of cores (synchronization is not the bottleneck).
Once threads are spread across processors, throughput remains 4–6× higher than that
of the M&S-based structure.

We review the operation of Morrison and Afek’s LCRQ in Section 4.1. We introduce
performance-oriented (but potentially blocking) versions of our new queues in Sec-
tions 4.2 (the single-polarity dual ring queue—SPDQ) and 4.3 (the multipolarity dual
ring queue—MPDQ). Lock-free variants appear in Section 4.4. Proofs of linearizability
appear in Section 4.5. As in Section 3, we assume the availability of (hardware-
supported) CAS, though load-linked/store-conditional would also suffice. To resolve
the ABA problem [Scott 2013, Sec. 2.3.1], we assume that we can store pointers in half
the CAS width, either by forcing a smaller addressing mode or by using a double-wide
CAS. We also assume the availability of a hardware FAI instruction that always
succeeds. Our pseudocode, as written, assumes sequential consistency for simplicity,
and we omit the code required for storage management. Our C++ implementation uses
atomic declarations for variables with races (forcing the compiler to insert store-load
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fences when necessary for correctness) and delays reclamation using hazard pointers
[Michael 2004]. Performance results (combined with those of the generic construction)
appear in Section 5.2.

4.1. LCRQ Overview

We here provide a brief overview of the CRQ and LCRQ algorithms from which our
SPDQ and MPDQ are derived. For a more complete treatment of the original algo-
rithms, readers may wish to consult the paper by Morrison and Afek [2013]. Complete
pseudocode for the LCRQ algorithm, adapted from that earlier paper, can be found in
Appendix B.

The LCRQ is a major enhancement of the M&S linked-list queue [Michael and Scott
1996]. Instead of an individual data element, each of its list nodes comprises a fixed-
size FIFO buffer called a Concurrent Ring Queue (CRQ). To ensure forward progress
and permit unbounded growth, the CRQ provides “tantrum” semantics: at any point, it
can “throw a tantrum,” closing the buffer to any further enqueues. Tantrums can occur
if, for instance, the circular buffer is full or if an enqueuer repeatedly loses a race with
another thread and wishes to avoid starvation. The linked list of the LCRQ handles the
tantrum cases by appending additional CRQs as needed, allowing the queue to grow
without bound.

4.1.1. CRQ Algorithm. Each CRQ comprises a circular array of R elements and two
counters, head and tail, whose remainders modulo R are used to index into the array.
Each element of the array, called a Slot, contains a data value (val), the index (idx) of
this data, and a safe bit that roughly indicates that the dequeuer of the data is known
not to have arrived at the slot before the enqueuer. When empty, the slot’s val member
is set to NULL. In all cases, we maintain the invariant ∀ i ring[i].idx ≡ i mod R. The
closed bit on the tail counter is used to throw a tantrum and inhibit further enqueues.

Ideal Operation. Ideally, an enqueue operation simply:

(1) performs an FAI on the tail counter to retrieve an index;
(2) performs a mod operation on the index to identify a slot in the buffer (ring); and
(3) uses CASto insert the new data value into the chosen slot.

Conversely, the ideal dequeue operation:

(1) performs an FAI on the head counter to retrieve an index;
(2) performs a mod operation on the index to identify a slot; and
(3) retrieves the current value in the slot and uses CAS to switch it to NULL.

Enqueue and dequeue operations that use the same index are said to correspond;
each dequeue must retrieve the data stored by the corresponding enqueue.

Enqueue Exceptions to Ideal Operation. While CRQ operations tend to perform ideally
most of the time, there are two cases in which an enqueue cannot do so:

Case 1e. There is already data in the slot. Since the buffer is circular, this may be
data that was stored with a smaller index and has yet to be dequeued, indicating
that we have wrapped all the way around the buffer.

Case 2e. Evidence suggests (presented later) that what would have been the cor-
responding dequeue operation may already have run, implying that any data that
we enqueue would never be dequeued.
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In either of these cases, the enqueuer skips the index and counts on the dequeuer (if it
has not run yet) to recover.

Dequeue Exceptions to Ideal Operation. There are also two cases in which a dequeue
cannot perform ideally:

Case 1d. The corresponding enqueue has not yet run. In this case, the dequeue
operation must leave some signal for its corresponding enqueue to prevent it from
completing. When the enqueue operation reaches this index, it will be in Case 2e.
Case 2d. The corresponding enqueue already ran, but skipped this index due to
either Case 1e or Case 2e (the latter may occur because of Case 1d at some previous
index that mapped to the same slot).

The exception cases for dequeue are identified by finding either the wrong index in a
slot or a NULL value. In both cases, we need to leave a signal for the corresponding
enqueue:

—If the slot is empty, we increase its index (idx) to the dequeuer’s index plus R.
—Alternatively, if the slot holds data, we clear the slot’s safe bit.

These signals constitute the evidence seen in Case 2e: an enqueuer must skip any
slot that has an index larger than its own or that is not marked as safe. Note that
an erroneous signal (sent when an enqueuer has already skipped a slot) does not
compromise correctness: if the slot is empty, the dequeuer’s index plus R will be the
right index for the next possible enqueuer; if the slot is full, a cleared safe bit will be
ignored by any delayed but logically earlier dequeuer. In the worst case, an unsafe slot
may become unusable for an indefinite period of time (more on this later).

Final Notes on the CRQ. The CRQ algorithm also provides code for several additional
cases:

Queue may be full. An enqueue must fail when the CRQ is full. This case can be
detected by observing that head − tail > R. In this case, we throw a tantrum and
close the queue.
Enqueues are otherwise unable to complete. If slots have become unsafe or if an
enqueue chases a series of dequeues in lock step, the enqueue may fail to make
progress even when the queue is not full. In this case, the enqueuer can close the
CRQ arbitrarily, forcing execution to continue to the next one in the larger LCRQ
list.
Queue is empty. This case can be detected by observing that head ≥tail. Prior to
returning and letting the caller retry, we check to see whether head has moved a
long way ahead of tail. If so, the next enqueue operation would end up performing
a very large number of FAI operations to bring tail forward to match. A special
fixState() routine uses CAS to perform the catch-up in a single step.
Slot can be made safe. Once a slot has been made unsafe, it generally remains
unsafe, forcing it to be skipped by future enqueues. However, if head is less than
the current enqueuer’s index, that enqueuer knows that its corresponding dequeuer
has not completed and, if the slot is empty, it can enqueue into the unsafe slot,
transitioning it to safe in the process.

4.1.2. LCRQ Algorithm. The LCRQ is a nonblocking FIFO linked list of CRQs. Enqueu-
ing into the LCRQ is equivalent to enqueuing into the tail CRQ of the linked list;
dequeuing from the LCRQ is equivalent to dequeuing from the head CRQ. Beyond
these simple behaviors, additional checks detect when to add new CRQs to the tail
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of the LCRQ and when to delete CRQs from the head. As both of our dual queues
significantly rework this section of the original algorithm, we omit the details here.

4.2. Single-Polarity Dual Ring Queue

In the original dual queue of Scherer and Scott [2004] (hereinafter the “S&S dual
queue”), the linked list that represents the queue always contains either all data
or all antidata. In effect, queue elements represent the operations (enqueues [data]
or dequeues [antidata]) of which there is currently an excess in the history of the
structure.

In our SPDQ, each ring in the list has a single polarity—it can hold only data or only
antidata. When the history of the queue moves from an excess of enqueues to an excess
of dequeues or vice versa, a new CRQ must be inserted in the list. This strategy has the
advantage of requiring only modest changes to the underlying CRQ. Its disadvantage
is that performance may be poor when the queue is near empty and “flips” frequently
from one polarity to the other.

4.2.1. Overview. To ensure correct operation, we maintain the invariant that all non-
closed rings always have the same polarity. Specifically, we ensure that the queue as a
whole is always in one of three valid states:

Uniform. All rings have the same polarity.

Twisted. All rings except the head have the same polarity, and the head is both
empty and closed (sealed).

Empty. Only one ring exists, and it is both empty and closed.

Since a public enqueue operation may end up dequeuing antidata internally, and a
public dequeue method may end up enqueuing data, depending on the internal state of
the queue, we combine these into a single “denqueue” method (Figure 5), which handles
both (similar to the remsert method of the generic construction).

Unless a denqueue invocation discovers otherwise, it assumes that the queue is in
the uniform state. Upon beginning an operation, a thread will check the polarity of
the head ring and from there extrapolate the polarity of the queue. If it subsequently
discovers that the queue is twisted, it attempts to remove the head and retries. If it
discovers that the queue is empty, it creates a new ring, enqueues itself in that ring,
and appends it to the list. Note that line 241 of Figure 5 references the nonblocking
variant of the SPDQ, for which we delay explanation until Section 4.4.

4.2.2. Modifications to the CRQ. Our SP_CRQ variant of the CRQ class incorporates
three small changes. First, we add a Boolean field polarity at line 94 to indicate the
type of ring. Second, when data “mixes” with existing antidata, we arrange to alert the
waiting negative thread so that it can return. Specifically, we represent the antidata
elements of a negative ring as pointers to Waiter objects (Figure 4). We then replace the
element-removing CAS at line 158 with a call to ((Waiter*)old)→satisfy(arg), where arg
is the datum being provided by the positive thread. If this CAS succeeds, we perform
a “blind clean-up” CAS on the actual ring slot. If that second CAS fails, someone else
has cleaned up for us; either way, we return. (This same idiom can be seen at line 413
in the lock-free variant of the SP_CRQ, which we will discuss in Section 4.4.)

Our third change adds another Boolean flag, sealed, to the CRQ at line 94 and a new
method, seal (Figure 6), that attempts to close the queue atomically if it is currently
empty. Once seal succeeds, the SP_CRQ is both closed, preventing additional enqueues,
and empty, allowing it to be removed from the linked list. Our implementation of seal
is based on the fixState method of the original CRQ.
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Fig. 4. SPDQ data types.

Fig. 5. SPDQ denqueue. Fig. 6. SP_CRQ seal.

4.2.3. Internal Enqueue. Once a thread has determined the overall queue polarity, it
attempts the appropriate operation on the correct ring (either the head or tail).

In the internal enqueue method (Figure 7), we first read tail and verify both that it is
indeed the tail of the list [Michael and Scott 1996] and that the queue is not twisted. If
one of these conditions does not hold, we correct it by moving tail or head accordingly.
We then attempt to enqueue ourselves into the tail ring. If we succeed, we are done
and either return or wait, depending on our polarity. If we fail, indicating that the tail
ring is closed, we create a new ring, enqueue into it, and append it to the list.

4.2.4. Internal Dequeue. In the internal dequeue method (Figure 8), we again verify
that we have the correct head. If so, we dequeue from it. If we succeed, we are finished.
If not, the head ring is empty and should be removed. If the next ring exists, we simply
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Fig. 7. SPDQ internal_enqueue. Fig. 8. SPDQ internal_dequeue.

swing the head pointer and continue there. If head→next is NULL, then the head ring
is also the tail, and the entire queue is empty. If we can seal the head, we may flip
the queue’s polarity (Figure 9). We flip the queue by adding a new ring of our own
polarity, enqueuing ourselves into it, attaching to the head ring, and swinging the tail
and head pointers. Prior to the final CAS, the queue is twisted. That is, the head ring
is both closed and empty, but the remainder of the queue is of a different polarity. Any
subsequent enqueue or dequeue will fix this state prior to continuing.

4.2.5. Forward Progress. Public enqueue (positive) operations inherit lock-free progress
from the LCRQ algorithm [Morrison and Afek 2013]. In the worst case, an enqueuer
may chase an unbounded series of dequeuers around a ring buffer, arriving at each slot
too late to deposit its datum. Eventually, however, it “loses patience,” creates a new
ring buffer containing its datum, closes the current ring, and appends the new ring
to the list. As in the M&S queue [Michael and Scott 1996], the append can fail only
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Fig. 9. Flipping the polarity of the SPDQ.

if some other thread has appended a ring of its own, and the system will have made
progress.

Because they may wait for data, public dequeue (negative) operations are more sub-
tle. Recall from Section 2 that these are modeled as a potentially unbounded sequence
of nonblocking operations. The initial remove_request linearizes the request for data
of the calling thread, T . The last operation (the successful remove_followup) linearizes
T ’s receipt of that data. In between, unsuccessful follow-up operations perform only
local memory accesses, inducing no load on other threads. Finally, the total method
(in our case, an enqueue) that satisfies T ’s pending request must ensure that no suc-
cessful follow-up operation by another waiting thread can linearize in-between it (the
satisfying operation) and T ’s successful follow-up.

This final requirement is where the SPDQ as presented so far runs into trouble. A
positive thread that encounters a negative queue must perform two key operations:
remove the antidata from the queue and alert the waiting thread. In the S&S dual
queue, it alerts the waiting thread first by “mixing” its data into the antidata node.
After this, any thread can remove the mixed node from the queue.

In the SPDQ as presented so far, an antidata slot is effectively removed from con-
sideration by other threads the moment the corresponding enqueuer performs its FAI.
Mixing happens afterward, leaving a window in which the enqueuer, if it stalls, can
leave the dequeuer waiting indefinitely—manifesting the same preemption window as
the generic dual construction. In practice, such occurrences can be expected to be ex-
tremely rare and, indeed, the SPDQ performs quite well, achieving roughly 85% of the
throughput of the original LCRQ while guaranteeing FIFO service to pending requests
(Section 5.2). In Section 4.4, we will describe a modification to the SPDQ that closes
the preemption window, providing true lock-free behavior (in the dual data structure
sense) at essentially no additional performance cost.

4.3. Multi-Polarity Dual Ring Queue

In contrast to the SPDQ, the MPDQ incorporates the flipping functionality at the
ring buffer level and leaves the linked list structure of the LCRQ mostly unchanged.
The MPDQ takes advantage of the preallocated nature of ring slots, discussed at the
beginning of Section 4.2. For a dual structure, it does not matter whether data or
antidata is first placed in a slot; either can “mix” with the other.

4.3.1. Overview. In their original presentation of the CRQ, Morrison and Afek [2013]
began by describing a hypothetical queue based on an infinite array. Similar intuition
applies to the MPDQ. Since we are matching positive with negative operations, each
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Fig. 10. MPDQ data types and simple methods.

Fig. 11. Flipping the polarity of the MP_CRQ.

thread, on arriving at a slot, must check if its partner has already arrived. If so, it
mixes its data (antidata) with the antidata (data) of the corresponding operation. If
not, it leaves its information in the slot (a negative thread also waits).

To maintain the illusion of an infinite array, we must keep track of both data and
antidata indices. These indices, as in the LCRQ, have two components:

(1) which ring in the linked list to use and
(2) which ring slot to use.

In contrast to the LCRQ case, we do not care which kind of operations are currently
ahead of the other—only that a newly arriving operation can identify the correct ring
and index to use. To accommodate these changes, we rename the indices and pointers
(Figure 10). We also add a bit to each slot to identify its polarity.

Figure 11 illustrates how data_idx and antidata_idx move past one another within the
MP_CRQ. The biggest challenge in the new design is the need to stop both indices at a
common slot when closing a ring; we discuss this challenge in Section 4.3.3.
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Fig. 12. MPDQ ring denqueue.

4.3.2. MP_CRQ denqueue(). As the MPDQ is more symmetric than the SPDQ, we can
combine all ring operations into a single denqueue method (Figure 12). Each thread,
after choosing the ring on which to operate, obtains a slot from its respective index. It
then attempts to dequeue its counterpart or, failing that, to enqueue itself.

Note that at no point will the MP_CRQ ever return EMPTY, as any thread that
believes that the queue is empty would progress to the next slot and enqueue itself.
For similar reasons, the fixState method of the original CRQ goes away, since one index
passing another is considered normal operation.

Ideal Operation. Ideally, a denqueue operation:

(1) performs a FAI on the data_idx or antidata_idx of the chosen ring, to obtain an index;
(2) executes a mod operation on the index to identify a slot in the buffer (ring);
(3) if arriving first, uses CAS to insert the new datum or antidatum into the array—if

a negative thread, it waits for its corresponding operation; and
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(4) if arriving second, retrieves the current value in the slot and uses CAS to switch it
to NULL—if a positive thread, it satisfies the waiting negative thread.

MPDQ Exceptions to Ideal Operation. Like the LCRQ, the MPDQ tends to perform
ideally most of the time. When it cannot do so, one of the following must have occurred:

Slot is occupied. There is already data is the slot, but it is not from the corre-
sponding thread. In this case, wraparound has occurred. We handle it as in the
LCRQ, by clearing the safe bit. Note that since both positive and negative threads
attempt to enqueue, whichever sets the bit will successfully signal its counterpart.

Slot is unsafe. In this case, our counterpart has possibly already arrived but was
unable to use the slot and cleared the safe bit. If we were to enqueue here, our
counterpart might never receive it; thus, we simply skip the slot. In principle, if we
verified that our counterpart has yet to begin, we could make the slot safe again,
as in the LCRQ. Results of our testing suggest that this optimization is generally
not worth the additional cache line miss to check the opposite polarity index. We
therefore give up on unsafe slots permanently, falling back on the ability to add
additional rings to the backbone list.

Ring is full. This condition occurs when | data_idx − antidata_idx | ≥ R. As in the
LCRQ, we close the ring.

Livelock. In a situation analogous to pathological cases in the LCRQ and SPDQ (as
discussed in Section 4.2.5), it is possible in principle for the ring to be full or nearly
full of non-NULL slots, each of which is pending mixing by some preempted thread.
In this case, an active thread attempting to make progress may repeatedly mark
slots unsafe. To preclude this possibility, each thread keeps a starvation_counter.
If it fails to make progress after a set number of iterations, it closes the queue via
tantrum semantics and moves on.

Counter overflow. On a 32b machine, we can allocate only 30b to each index. This is
a small enough number to make overflow a practical concern. Our implementation
notices when the index nears its maximum and closes the queue. Similar checks,
not shown in the pseudocode, are used in all the tested algorithms.

4.3.3. Closing the MP_CRQ. As both indices in the MP_CRQ are used for enqueuing,
they both must be closed simultaneously. Otherwise, a thread that switches from de-
queuing data to enqueuing antidata (or vice versa) might find itself in the wrong ring
buffer. Our closing mechanism takes advantage of the observation that the actual index
at which the queue is closed does not matter so long as it is the same for both. Thus,
we change the meaning of the spare bit for both the data_idx and antidata_idx from
closed to closing. The new interpretation implies that the queue is possibly closed or in
the process of closing. If a thread observes that the queue is closing, it cannot enqueue
until it knows that the ring is closed for sure—and at what index. This determination
is arbitrated by the closed_info tuple within the MP_CRQ (Figure 10). The closed bit
of that tuple indicates whether the queue is actually closed; idx indicates the index at
which it closed.

To close the queue (Figure 13), a thread first sets the closing bit on either data_idx
or antidata_idx. It then calls discovered_closing, as does any thread that discovers a
closing bit that has already been set. This method verifies that both indices are closing.
Then, the method uses CAS to put the maximum of the two indices into closed_info and
set its own closed bit. Some thread’s CAS must succeed, at which point the queue is
closed. Any thread with a larger index than that stored in closed_info must have been
warned that its index may not be valid, and will not enqueue. Finally, some threads

ACM Transactions on Parallel Computing, Vol. 3, No. 4, Article 22, Publication date: March 2017.



Generality and Speed in Nonblocking Dual Containers 22:23

Fig. 13. MPDQ closing.

Fig. 14. MPDQ list denqueue.

that find the queue to be closing may, in fact, still be able to enqueue as their indices
are below that stored in closed_info. They return to their operations and continue.

4.3.4. MPDQ List. At the backbone list level, the MPDQ must maintain pointers to the
appropriate rings for both data and antidata. If any operation receives a closed signal
from a ring, it knows that it must move along to the next one. If no next ring exists, it
creates one and appends it to the list in the style of the M&S queue. It first updates
the next pointer of the previous final ring and then swings the main data_ptr and/or
antidata_ptr, as appropriate. Once again, we are able to combine positive and negative
operations into a denqueue method at the list level (Figure 14).

4.3.5. Forward Progress. Like the SPDQ and the generic dual construction, the MPDQ
as presented suffers from a “preemption window” in which a positive thread obtains
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an index, identifies its corresponding negative thread, but then stalls (e.g., due to
preemption), leaving the negative thread inappropriately blocked and in a situation in
which no other thread can help it. The following section addresses this concern.

4.4. Lock Freedom

The SPDQ and MPDQ, as presented so far, are eminently usable: they are significantly
faster than the S&S dual queue (rivaling the speed of the LCRQ), and provide fair FIFO
service to waiting threads. To make them fully nonblocking, however, we must ensure
that once a positive thread has identified a slot already in use by its corresponding
thread, the negative thread is able to continue after a bounded number of steps by
nonblocked threads.

For both algorithms, we can close the “preemption window” by treating FAI as a
mere suggestion to positive threads. Before they enqueue, they must verify that all
smaller indices have already been satisfied. For purposes of exposition, we refer to
the minimally indexed unsatisfied slot as the algorithm’s wavefront. The changes are
smaller in the SPDQ case and (as we shall see in Section 5.2) have almost no impact
on performance. The changes are larger in the MPDQ case, with a larger performance
impact. Pseudocode for both changes can be found in Appendix B.

4.4.1. SPDQ Wavefront. As can be observed in the original CRQ algorithm, only internal
dequeue operations can change the value of a given slot’s index. If all internal dequeue
operations must wait until the previous slot’s index is changed, two simplifications
occur:

(1) No slot can become unsafe since no dequeue operation can loop all the way around
the ring before another dequeuer has a chance to finish its operation.

(2) There is always exactly one indexing discontinuity, in which the difference between
neighboring indices is greater than one.

The discontinuity in indices (the MPDQ analogue of which can be seen in Figure 11),
indicates that a slot is ready and can be used to strictly order dequeue operations for
the SPDQ. Since the preemption window occurs only when a positive thread dequeues
from a negative ring, we can limit code changes to this single case.

Before a thread can complete an operation on an index (including returning a
CLOSED signal from MP_CRQ:denqueue), the index must be at the wavefront. If it
is not, the thread, after waiting for a timeout, scans backward along the ring looking
for the wavefront. Once the thread finds the wavefront, it attempts to operate on this
slot on the assumption that the thread to which the slot “belongs” is neglecting to do
so. Any thread that finds its current slot already completed (by a successor that lost
patience) must then continue forward. Since the number of active threads at any point
is equal to the distance from the wavefront to the head, all threads will eventually
succeed.

4.4.2. MPDQ Wavefront. In contrast to the SPDQ, the preemption window can also
manifest itself in the MPDQ during an enqueue operation. Since all positive operations
must complete in order and must wait (for nonblocking progress) until waiting partners
of previous positive operations have been notified, enqueues also need to be considered
when modifying the algorithm. With mixed ring polarities, a slot is ready either because
it follows a discontinuity (the previous slot has been dequeued) or because the previous
slot does not contain NULL (i.e., it has been enqueued). The algorithm thus is similar
to the SPDQ, involving a backward search after timeout, but cannot be isolated as
easily—all enqueue operations must follow the wavefront protocol.
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4.5. Correctness

This section provides proofs of correctness for the blocking versions of both the SPDQ
and the MPDQ.

Due to the preemption window problem, neither algorithm adheres precisely to the
definition of a nonblocking dual data structure. In particular, the preemption window
appears when a positive thread has found its corresponding antidata but has not
yet passed the data to the waiting negative thread. If we allow a negative thread to
execute arbitrary code between calls to remove_followup, it may learn of a successful
“subsequent” remove in some other thread and then go on to perform an unsuccessful
remove_followup of its own. To avoid this case, we assume for purposes of our proof that
remove_followup is blocking and always succeeds. In terms of sequential semantics,
this means that remove_followup is partial: there are no legal sequential histories in
which a remove_followup appears before its matching insert.

Like in Section 3.2, we assume that all data values are unique and we consider only
well-formed concurrent histories, in which every thread subhistory for a given dual
container is a prefix of some string in (i, r s)∗, where i is an insert operation, r is a
remove_request, and s is a (successful, and conceivably blocking) remove_followup on
the ticket returned by remove_request.

For purposes of the proof, we make trivial modifications to the pseudocode of both
the SPDQ and the MPDQ: (1) for both, we rename remove to remove_request; (2) for
both, instead of entering the Waiter::spin method, in which negative threads would wait
for data (line 13), we return a ticket containing the Waiter object; (3) we modify the
code at lines 337 and 438, where negative threads currently discover existing data, to
return a ticket Waiter object whose val field contains this data; and (4) we rename the
spin (Line 13) to remove_followup, exporting it via a public interface that takes a Waiter
object as a parameter.

To prove safety, we first review the sequential semantics of a FIFO queue and its dual
variant. For each of the SPDQ and the MPDQ, we then identify linearization points for
each method and demonstrate that all realizable concurrent histories are equivalent
to some valid sequential history.

FIFO Queue. A queue is a standard abstract container with insert and remove meth-
ods. When the queue is total, the remove method returns the oldest value previously
inserted by an insert operation that has yet to be returned by remove. If no such value
exists, remove returns an EMPTY signal.

A sequential dual queue exports three methods: insert, remove_request, and re-
move_followup. The insert method inserts a data value into the structure, while a
remove_request inserts a request and returns a ticket. A remove_followup takes a ticket
returned by a previous remove_request and returns a data value. The ith insert and ith
remove_request are matching: a remove_followup called on the ticket returned by the
ith remove_request always linearizes after, and returns the value inserted by, the ith
insert. Separation of the (nonblocking) remove_request operation from the (blocking)
remove_followup allows us to observe that remove_followup performs no remote mem-
ory operations prior to its linearization point. Reusing terminology from the proof of
the generic dual container, in a matching insert/remove_request pair, we call the first
to linearize the leading operation and the second the trailing operation.

4.5.1. SPDQ Safety. Our SPDQ data structure relies on the correctness of the under-
lying SP_CRQ “tantrum queue” implementation borrowed from Morrison and Afek
[2013]. External insert and remove_request operations on the SPDQ have the following
linearization points:
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(1) When the tail is CLOSED, a leading operation (one whose match does not yet exist)
linearizes upon appending a new tail SP_CRQ to the list, either at line 313 or at
line 353.

(2) When the tail is not CLOSED, a leading operation linearizes upon enqueueing into
the tail SP_CRQ at line 302.

(3) A trailing operation linearizes upon dequeuing from the underlying head SP_CRQ
at line 336.

The trivial remove_followup method linearizes within the Waiter object when it discovers
data (line 14).

THEOREM 5 (LINEARIZABILITY). Any realizable well-formed history of the SPDQ con-
taining only completed operations is equivalent to a legal well-formed history of the
sequential dual queue.

PROOF. We begin by noting a queue state invariant; the queue is always uniform,
twisted, or empty. Inspection of the code reveals that this invariant is maintained by
ensuring that every time an SP_CRQ is appended to the list, its predecessor is either
of a like polarity or is sealed, and both properties are monotonic. By maintaining this
invariant, we ensure that the queue also has a uniform polarity across all its contents
and that it passes through a distinct empty state in which it contains neither data
nor antidata. We now reason within a period between these empty states in which the
queue stores a single polarity.

Leading operations of this polarity linearize in order within a single SP_CRQ and
a given SP_CRQ is CLOSED before appending a successor. Thus, leading operations
are ordered internally by FIFO order. Trailing operations linearize in order within a
single SP_CRQ and a given SP_CRQ is sealed before dequeuing from its successor.
Thus, trailing operations follow the same FIFO order as leading operations.

An operation that discovers that the tail is empty but of an opposite polarity will seal
the tail, putting the queue into an empty state. This operation’s match cannot have
linearized by this point because, if it did, the tail could not be empty. Thus, the queue
is in an empty state when the numbers of insert and remove_request operations are
equal.

Since leading operations are stored in FIFO order according to the linearization
points, matching operations are serviced in FIFO order according to the linearization
points, and the transition between polarities must pass through an empty state first,
the internal state of the SPDQ precisely matches a valid state of a sequential dual
queue and has an equivalent sequential history.

4.5.2. MPDQ Safety. The MPDQ’s linearization points are similarly straightforward:

(1) If an operation is a leading operation and it successfully enqueues into an MP_CRQ
at line 418, it linearizes at the most recent fetch-and-increment at line 418.

(2) If an operation is a leading operation and no room exists in the newest MP_CRQ,
it linearizes upon appending a new tail MP_CRQ to the list at line 528.

(3) If an operation is a trailing operation and it successfully dequeues from an MP_CRQ
at line 435, it linearizes at the most recent FAI at line 418.

As in the SPDQ, the trivial remove_followup method linearizes within the Waiter object
when it discovers data (line 14).

THEOREM 6 (LINEARIZABILITY). Any realizable well-formed history of the MPDQ con-
taining only completed operations is equivalent to a legal well-formed history of the
sequential dual queue.
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PROOF. We begin by noting that the MP_CRQ provides correct sequential dual queue
semantics between its creation and its tantrum. By design, any enqueuer or dequeuer
that fails at a given index ensures that no other operation can use that index. All
successful operations linearize at their earlier FAI; consequently, their index corre-
sponds with their order among like-polarity operations. Thus, all successful insert and
remove_followup operations are FIFO ordered, respectively, by index, meaning that the
ith insert shares a slot with the ith remove_followup.

The discovered_closing routine ensures that any MP_CRQ, upon throwing a tantrum,
stores the same number of data and antidata entries and that an MP_CRQ can never
overflow.

The linking protocol ensures that the previous MP_CRQ is closed at some index before
appending a new MP_CRQ, and the enqueue protocol for a given polarity operation
ensures that a prior MP_CRQ is full for said polarity before moving on to its successor.

Consequently, the internal state of the MPDQ always represents a valid list of data
and antidata sorted in FIFO order. Across the history, matching operations share a slot
such that the ith insert synchronizes with the ith remove_followup.

4.5.3. Liveness. As noted in Section 4.4, the present ring buffer algorithms are vulner-
able to a preemption window, possibly leading to blocking in remove_followup. However,
insert and remove_request are lock free for both the SPDQ and the MPDQ. We here
provide brief proofs of their liveness properties. Fully lock-free versions of the SPDQ
and MPDQ appear in Appendix B.

SPDQ Liveness. The underlying SP_CRQ inherits its lock-free progress from the
original CRQ. Outside of the SP_CRQ, three loops exist in the code, in denqueue,
internal_enqueue, and internal_dequeue. If the denqueue loop retries, the polarity of
the underlying queue did not match the head SP_CRQ, either because the polarity
changed or the queue was twisted. If the polarity changed, this means that some
thread made progress by appending a node. If the queue was twisted, subsequent
calls to internal_enqueue or internal_dequeue will detect and remove the sealed head
node. The loop in internal_enqueue only retries when failing to append a node or when
helping the tail pointer reach the end of the list. In both cases, another thread has
made progress. The loop in internal_dequeue retries only if it removes a sealed node
from the head of the list, helping another thread to make progress. Thus, investigation
of loops proves that the insert and remove_request methods of the SPDQ are lock-free.

MPDQ Liveness. The underlying MP_CRQ has two nested loops. The inner loop re-
tries if one of several CASes on the underlying slot fails, either because the matching
operation has already arrived or because the ring buffer has looped around. In both
cases, some thread has made progress. The outer loop retries if the slot is deemed un-
usable. This loop is bounded by the starvation_counter, ensuring that it cannot continue
indefinitely. The final loop is the list-level loop in denqueue, which retries only if a ring
append fails due to another thread appending. Thus, investigation of loops proves that
the insert and remove_request methods of the MPDQ are lock-free.

5. EXPERIMENTAL RESULTS

We evaluated our algorithms on a machine running Fedora Core 19 Linux with two 18-
core, 2-way hyperthreaded Intel Xeon E5-2699 v3 processors at 3.6 GHz (i.e., with up
to 72 hardware threads). Each core has private L1 and L2 caches; the last-level cache
(45 MB) is shared by all cores of a given processor. Tests were performed while we were
the sole users of the machine. Threads were pinned to cores for all tests. Moving from 1
to 72 threads, we first placed a single thread on each core of one processor (1–18), then
a single thread on each of the same core’s hyperthreads (19–36). We subsequently filled
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Fig. 15. Generic dual performance on the hot potato benchmark.

the second processor the same way, distributing first to physical cores (37–54) and then
to their associated hyperthreads (55–72). Code was written in C++ and compiled using
g++ 4.8.2 at the -O3 optimization level. When a nonblocking memory allocator was
appropriate, we used one adapted from the Rochester Software Transactional Memory
(RSTM) package [Marathe et al. 2006].

5.0.4. Microbenchmark. To test the throughput of dual containers, we wanted to sim-
ulate as random an access pattern as possible. Unfortunately, purely random choice
among insert and remove (enqueue and dequeue) allows for the possibility of deadlock
when all threads call remove on a negative container.

To solve this problem, we used the hot potato microbenchmark [Izraelevitz and Scott
2014c]. This test, based on the children’s game, allows each thread to access a dual
structure randomly, choosing on each iteration whether to insert or remove an element.
However, at the beginning of the test, one thread inserts the hot potato, a special data
value, into the container. If any thread removes the hot potato, it waits a set amount
of time (1 ms in our tests) before reinserting the value, then continuing to randomly
operate on the container. The hot potato eliminates the possibility of deadlock and
allows the test to continue with minimal interaction among threads outside of the data
structure.

To test a given structure, we ran the hot potato benchmark for a fixed time interval of
ten seconds. We ran each test five times and report the maximum throughput of these
runs. No large deviations among tests were noted for any of the queues. Note that,
while we divide the generic dual results from those of the dual ring queue for clarity of
presentation, Figures 15 and 16 use the same scale on the Y axisthus, the curves are
directly comparable. We use a logarithmic scale on the X axis to increase readability
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Fig. 16. Dual ring queue performance on hot potato benchmark.

at lower thread counts, where the most interesting effects occur; performance drops
dramatically once threads span the boundary between sockets.

5.1. Generic Dual Results

Figure 15 shows the throughput of our generic dual container. We test several combi-
nations of subcontainers, with and without the peek operation, to close the preemption
window:

LCRQ(+), Treiber stack(–), blocking [GDC-B (LCRQ:TStack)]: The fastest com-
bination. Uses the LCRQ of Morrison and Afek [2013] for data and the Treiber stack
[Treiber 1986] for antidata.

LCRQ(+), Treiber stack(–), nonblocking [GDC-NB (LCRQ:TStack)]: A com-
parison to demonstrate the impact of closing the preemption window.

LCRQ(+), LCRQ(–), blocking [GDC-B (LCRQ:LCRQ)]: A FIFO dual queue, suit-
able for direct comparison to the MPDQ, SPDQ, or S&S dual queue.

LCRQ(+), M&S Queue(–), blocking [GDC-B (LCRQ:MSQ)]: Another FIFO dual
queue, but with a less efficient antidata structure.

LCRQ(+), M&S Queue(–), nonblocking [GDC-NB (LCRQ:MSQ)]: Another com-
parison to demonstrate the impact of closing the preemption window, but for a FIFO
structure.

M&S Queue(+), M&S Queue(–), nonblocking [GDC-NB (MSQ:MSQ)]: Demon-
strates the baseline cost of our construction when compared directly to the S&S dual
queue.

LCRQ(+), H&M Ordered List(–), blocking [GDC-B (LCRQ:HMOL)]: Orders
waiting threads based on priority, using the lock-free ordered list of Harris [2001] and
Michael [2002].
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For comparison purposes, we also show other dual and total containers from prior work:
S&S Dual Queue: The algorithm of Scherer and Scott [2004].
FC Dual Queue: A best-effort implementation of a flat-combining dual queue, using

the methodology of Hendler et al. [2010b].
LCRQ: The fast total ring queue of Morrison and Afek [2013].
All ring queues use a ring size of 2048 elements. In our realization of the flat com-

bining queue, each thread, instead of actually performing its desired operation on the
structure, instead registers a request for the operation in a preassigned slot of a queue-
specific array. Threads waiting for their operations to complete periodically compete
for a global spin lock. Any thread that acquires the lock becomes a combiner. It makes
a full pass through the request array, pairing up positive and negative operations, and
storing excess data in a list for the next combiner. Other threads that see that their
operations have completed simply return.

5.1.1. Optimizations. All GDC results employ optimizations not shown in Figure 2.
First, we skip CAS operations when a precheck indicates that they will fail. Second,
and more significantly, each operation prechecks the opposite subcontainer for empty
(using the oppositeCheck functions), before inserting a placeholder. This precheck limits
both the number of spurious memory allocations and the size of the subcontainers.

5.1.2. Performance. With the LCRQ as the data subcontainer and ignoring the pre-
emption window, our generic dual container significantly outperforms traditional dual
structures, including the S&S dual queue and the flat combining queue. Clearly, a fast
base algorithm matters enormously. The antidata subcontainer also matters: using
the Treiber stack over the M&S queue provides a roughly 25% speedup in the blocking
case and even outperforms the LCRQ as an antidata subcontainer, presumably because
LIFO ordering of waiting threads leads to better cache performance.

Closing the preemption window incurs a significant performance cost. With all
threads competing to satisfy the same peeked-at placeholder, contention on that object
becomes a bottleneck.

If mixed ordering disciplines are not required, the fastest overall performance comes
from the MPDQ and SPDQ, as seen in the following section.

5.2. Custom Dual Results

Figure 16 demonstrates the performance of our custom fast dual ring queue algorithms.
As in Section 5.1, we use a logarithmic X axis for the sake of visual clarity. We show
throughput for the following:

SPDQ, MPDQ [SPDQ-B, MPDQ-B]: The blocking algorithms of Sections 4.2
and 4.3, respectively.

SPDQ nonblocking, MPDQ nonblocking [SPDQ-NB, MPDQ-NB]: The non-
blocking variants described in Section 4.4.

M&S Queue, LCRQ [MSQ, LCRQ]: The nondual algorithms of Michael and Scott
[1996] and of Morrison and Afek [2013], with an outer loop in which negative threads
retry until they succeed in dequeuing data.

S&S Dual Queue, FC Dual Queue: Repeated from Section 5.1, the dual queue
algorithm of Scherer and Scott [2004] and the flat-combining dual queue inspired by
the work of Hendler et al. [2010b].

Generic Dual, LCRQ(+), Treiber stack(–), blocking [GDC-B (LCRQ:TStack)]:
The fastest generic combination from Section 5.1, as a baseline against which to assess
the performance improvement available from custom algorithms.

FAI: Another baseline, to obtain a sense of fundamental hardware limits. This curve
simply plots the maximum rate at which threads can perform FAI operations on a
shared counter.
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As in Section 5.1, the various ring queues all use a ring size of 2048 elements.

5.2.1. Blocking Variants. As shown in Figure 16, our new algorithms have throughput
significantly higher than that of any existing dual queue. Qualitatively, their scalability
closely follows that of the LCRQ across the full range of thread counts, while addition-
ally providing fairness for dequeuing threads. The SPDQ is perhaps 20% slower than
the LCRQ, on average, presumably because of the overhead of “flipping.” The MPDQ is
about 5% faster than the LCRQ, on average, presumably because it avoids the empty
check and the contention caused by retries in dequeuing threads.

All three algorithms (LCRQ, SPDQ, MPDQ) peak at 36 threads, when there is maxi-
mum parallelism without incurring chip-crossing overheads. The raw FAI test similarly
scales well within a single chip, but it obtains a significant boost in throughput with
the introduction of hyperthreads. With a tiny inner loop, this test benefits greatly from
the shared L1 cache; the real algorithms, by contrast, perform enough work per iter-
ation that the typical cache line has been “stolen” by another core before the sister
hyperthread can use it. After moving to the second chip, all algorithms are limited by
interconnect latency.

Interestingly, under some conditions, the new dual queues and LCRQ may even
outperform the single integer FAI test. Depending on the state of the queue, the active
threads may spread their FAI operations over as many as three different integers (head,
tail, and the head or tail of the next ring), distributing the bottleneck.

Based on these tests, we recommend using the MPDQ in any application in which
dequeuing threads need to wait for actual data.

5.2.2. Lock-free Variants. While the blocking versions of the SPDQ and MPDQ both
outperform their lock-free variants, the performance hit is asymmetric. The lock-free
SPDQ is almost imperceptibly slower than the blocking version. We suspect that this
happens because the window closing code runs only rarely, when the queue’s polar-
ity is negative and many threads are waiting. While the window closing penalty per
preemption incident is linear in the number of threads, the performance hit is isolated.

The MPDQ takes a drastic hit in order to close the window. Since we cannot isolate
data from antidata within the MPDQ, every positive thread must effectively “hand-
shake” with the previous positive thread, adding several cache misses to the critical
path of the hot potato test.

Sensitivity of Results. We experimented with changes to a large number of timing
parameters in the hot potato test. Several of these change the overall throughput,
but none affects the relative performance of the tested algorithms. In general, larger
ring sizes improve speed across the range of threads. Increasing the delay before re-
enqueuing a hot potato slows everything down by causing queues to spend more time
in a negative polarity.

6. CONCLUSION

In this work, we have presented improvements to both the usability and performance
of dual data structures.

In Section 3, we introduced a generic construction for dual containers, allowing
the programmer to choose orderings independently for data and pending requests, by
combining any positive (data) container with almost any negative (antidata) container
(specifically, any that supports the peek and remove_conditional operations). Our proofs
demonstrate that the construction correctly combines the ordering semantics of the
underlying containers, preserves obstruction freedom, and guarantees the immediate
wakeup and contention freedom required of a dual data structure. Our experimental
results suggest that while the mixing of ordering disciplines incurs nontrivial cost, the
resulting containers are still fast enough to be quite useful in practice. In particular,
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blocking (“not quite nonblocking”) variants that use the LCRQ of Morrison and Afek
[2013] for the data subcontainer outperform all dual containers published prior to this
work.

In Section 4, we introduced two custom dual containers that extend the LCRQ to
provide fair FIFO service to threads that are waiting to dequeue data. Our algorithms
outperform existing dual queues by a factor of 4–6× and scale much more aggressively.
We hope that these algorithms will be considered for use in thread pools and other
applications that depend on fast interthread communication.

In their basic form, our fast algorithms are again “almost nonblocking.” We also
introduced fully lock-free variants. We believe that the basic versions should suffice in
almost any real-world application. The MPDQ algorithm, in particular, is substantially
simpler than the original LCRQ, and even outperforms it by a little bit. If one is
unwilling to accept the possibility that a dequeuing thread may wait longer than
necessary if its corresponding enqueuer is preempted at just the wrong point in time,
the lock-free version of the SPDQ still provides dramatically better performance than
the S&S dual queue.

APPENDIXES

A. GENERIC DUAL CONTAINERS PSEUDOCODE

Pseudocode for the generic dual container construction appeared in Figures 2 and 3. To
be used as an antidata subcontainer in the fully nonblocking version of the construction,
an existing container must be modified to support the peek and remove_conditional
methods. We illustrate this modification using the Treiber stack [Treiber 1986].

In our implementation, the returned key from peek is the value of the top pointer.
Any operation that modifies the stack must change this pointer and will force the
paired remove_conditional operation to fail. Similar techniques can be used in most
nonblocking data structures.

For presentation purposes, the following code assumes sequential consistency, al-
locates fresh nodes in push to avoid the ABA problem, and assumes the existence of
automatic garbage collection. Our C++ code performs manual storage reclamation and
uses counted pointers and a type-preserving allocator to avoid the ABA problem.
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B. FAST DUAL QUEUES PSEUDOCODE

This appendix contains pseudocode for all algorithms relating to Section 4. For a de-
tailed explanation of the LCRQ, see Morrison and Afek [2013].

B.1. Linked Concurrent Ring Queue (LCRQ)
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B.2. Lock-free SPDQ

B.3. Lock-free MPDQ
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