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Abstract
This work proposes and discusses the implications of adding a new
feature to hardware transactional memory, allowing a program to
specify that a transaction should always abort (even if it executes
a commit instruction), and is thus guaranteed to be free of side
effects. Perhaps counterintuitively, we believe such a primitive can
be useful.

Prior art has already noted that HTM transactions, even in fail-
ure, can accelerate the subsequent execution of their contents by
warming up the branch predictor and caches. However, traditional
HTM requires that the programmer properly coordinate between
HTM and other synchronization primitives, otherwise data races
can occur. With always-abort HTM (AAHTM), no such synchro-
nization is necessary, because there is no risk of accidentally com-
mitting a transaction that has seen inconsistent state. We can there-
fore use AAHTM in scenarios where traditional HTM would be
unsafe. In this paper, we present several designs that use AAHTM,
discuss preliminary results, and identify other situations in which
the new primitive might be useful.

1. Introduction
The wide commercial availability of hardware transactional mem-
ory has given programmers a new and fast synchronization primi-
tive. Hardware transactional memory (or HTM), gives the guaran-
tee that all code executed within a transaction will appear as a sin-
gle atomic action from the perspective of other threads. In practice,
the hardware transaction leverages the cache coherence protocol to
privatize the transacting thread’s changes and detect conflicts be-
tween it and other threads. If the transaction cannot complete and
commit its changes (due to a conflict with another thread, overflow
of speculative hardware state, or use of an instruction that cannot
easily be isolated) the transaction aborts, reverting all its changes.
In the case of an abort, the thread may either retry the transaction
or use a different synchronization technique. In contrast with other
such techniques (e.g., locks), HTM achieves atomicity by detecting
and recovering from conflicts at run time, as opposed to pessimisti-
cally preventing them. As a result, HTM may result in higher con-
currency than would otherwise be achievable.

Unfortunately, HTM transactions must be used in conjunction
with other synchronization techniques. There is no guarantee that
a transaction will ever succeed, and without a different fall-back
mechanism the transacting thread may retry forever without suc-
cess (it might, for instance, repeatedly overflow its private caches,
or run long enough that it is always interrupted by a context switch).
Due to this limitation, HTM transactions are often exported to the
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application programmer via synchronization libraries that contain a
variety of cross compatible synchronization mechanisms ([7, e.g.]).

A common idiom for such synchronization libraries is to use
a fall-back lock. If a thread experiences several HTM aborts in a
row, it acquires this lock to guarantee progress. However, care must
be taken to ensure that critical sections executing concurrently un-
der the lock and HTM synchronize properly. No HTM transaction
should commit its changes while the lock is held: the transaction
might have read invalid state, leading it to exhibit undefined be-
havior. One common solution to this problem is early subscription.
Immediately upon entering the transaction, the transacting thread
reads the lock and ensures it is unheld (thereby ensuing that the
protected data is consistent). If any thread acquires the lock while
the transaction progresses, the transaction is immediately aborted
due to the detected conflict. However, this solution means that a
fall-back lock acquisition can abort a large number of concurrent
hardware transactions, even if no true conflict exists between those
transactions and the lock-protected critical section. An appealing
(erroneous) solution to this problem is lazy subscription to the
fall-back lock [4]. Before entering the transaction, the transacting
thread reads the fall back sequence lock (a lock whose value incre-
ments at every acquire and release). After the read, the thread enters
the hardware transaction. At the end of the transaction, just before
commit, the thread rereads the fall back lock’s value. If it hasn’t
changed, the transaction commits. The problem with lazy subscrip-
tion is the uncontrollable nature of a transaction’s undefined be-
havior. During a hardware transaction with lazy subscription, code
can read inconsistent state and, due to a resulting erroneous indirect
branch or a stray store to a return address on the stack, jump to an
arbitrary location including a commit instruction, thereby bypass-
ing the final check on the lock. In short, both a fall-back lock and
early subscription seem necessary to guarantee the correctness of
HTM, barring significant hardware changes [5].

Beyond the expected parallelization improvements of using
HTM for more fine-grained concurrency, researchers have noted
other benefits. In particular, there is sometimes a significant “pre-
fetching” effect, in which a failed transaction, despite leaving be-
hind no changes to semantic state, serves to warm up various hard-
ware structures—in particular, the branch predictor and caches—
for future executions of the transaction [6, 12, 14, 22]. If a failed
transaction executes sufficiently far before aborting, its subsequent
attempts (protected by either HTM or the fall-back lock) will ex-
ecute significantly faster due to this accidental prefetching. Under
certain conditions, the speed-up can be quite significant, even if the
transaction never completes under HTM. In this sense, HTM can
act as programmer-requested thread-level speculation.

Our work attempts to reap these prefetching benefits while
avoiding the lazy subscription problem. Our proposed solution is
a new hardware primitive which we call always-abort hardware
transactional memory. Always-abort HTM (AAHTM) acts just like
traditional HTM, with one exception: its transactions are guaran-
teed by the hardware to always abort and never commit. In general,
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we envision the use of always-abort HTM as an alternative to busy-
waiting in synchronization primitives: instead of waiting, we can
do something useful to prepare for future execution.

The idea of program-controlled prefetching as an alternative to
busy-waiting is widely applicable. While in this work we only ex-
plore the use of our hardware primitive in synchronization prim-
itives such as locks and barriers, always-abort HTM is likely to
be useful wherever waiting is required, such as in synchronous
communication or requests to hardware accelerators. Its opera-
tion is always safe, since an always-abort transaction can never
affect semantic state. In contrast to traditional hardware prefetch-
ing, AAHTM is significantly more flexible. Its speculative path can
be explicitly controlled and tuned by the programmer to achieve
higher accuracy and utility than are possible purely by watching the
(pre-wait) instruction stream. For processors that already support
HTM, this hardware primitive is straightforward to implement—all
that is required is a slightly different execution mode. Significantly
improved hardware prefetching is likely to require a larger larger
hardware investment.

The following discussion explores the uses and utility of
always-abort HTM. We begin with a motivating microbenchmark
which demonstrates the potential gains and pitfalls of our tech-
nique. Using the lessons learned there, we propose a number of
synchronization primitives that incorporate AAHTM. We con-
tinue with preliminary performance results on small and real-world
benchmarks with some discussion of our findings, as well as a re-
view of related work. We conclude with some ideas regarding other
potential uses of our hardware primitive.

2. Motivation and Implementation
Our argument for always-abort HTM is twofold: under amenable
conditions, it provides significant performance benefits over busy-
waiting or traditional HTM alternatives, and, furthermore, hard-
ware implementation of the technique is likely to be trivial on a
machine that already supports HTM.

2.1 Performance
To quantify the potential benefits of AAHTM, we begin by explor-
ing a simple microbenchmark—ArrayBench (Figure 1)—which
investigates what we see as a standard use case for our hardware
primitive: using AAHTM as an alternative to busy waiting in lock
acquisition. Note that this strategy is quite different from lock eli-
sion: instead of replacing locks with HTM, we retain true mutual
exclusion but accelerate critical sections with AAHTM.

In ArrayBench, threads repeatedly write to random locations
within a shared array A. The array is protected by a global lock.
We vary critical section size by changing the number of locations
touched under the lock, either ten in the “small footprint ” case
or one hundred in the “large footprint” case. In the “high con-
tention” case, we start the critical section by writing to A[0]; in
the “low contention” case, we skip that write. Our results report
write throughput.

We consider several alternatives. The first is traditional HTM
supported by a fall-back test-and-set lock. On transaction abort, we
either fall back to the lock immediately (htm-1) or after nine more
tries (htm-10). The second is a simple test-and-test-and-set lock
(tatas). The next alternative, tatas-aahtm, is an enhanced test-and-
test-and-set lock in which, if the first test fails, we start an AAHTM
execution of the critical section (pseudocode in Figure 2). For our
experiments, since AAHTM does not exist, we instead use regu-
lar HTM in an unsafe manner, precipitating the lazy subscription
problem. We do not believe that the error case (accidental jump to
a commit instruction) ever arises in our experiments.

As expected, when critical section size is small and contention
is low, HTM is by far the best choice, since most of the trans-
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Figure 1: ArrayBench throughput in transactions per second for
TAS lock and HTM. The X axis is the number of concurrent
threads; the Y axis is operations per second.

actions complete without conflicts and without being terminated
by time or space constraints. In contrast, when contention is high
and transaction size is large, most transactions fail due to conflict
and eventually revert to the fall-back lock, meaning that the simple
lock (tatas) outperforms HTM. Furthermore, by using the busy-
wait time to prefetch for the critical section, we can reduce the
time threads hold the lock and increase throughput via always-abort
HTM (tatas-aahtm).

This experiment also explores an additional advantage of
always-abort HTM—namely, that a thread can tell when the mech-
anism is being used, and can switch to an alternative code path,
created by the programmer or the compiler. Since AAHTM is a
sandbox that never writes anything to the memory, the alternative,
speculative code path can aggressively circumvent abort-prone ac-
cesses (such as highly contended variables or I/O operations), with-
out compromising correctness. In the ArrayBench experiment, we
created a speculative path (tatas-aahtm-opt) that avoids the con-
tentious access to the first element of the array when in AAHTM,
reducing the likelihood of a conflict abort when prefetching.

This motivating example illustrates the best case for our new
hardware primitive: high abort-rate critical sections with large
memory footprints. In this case, AAHTM provides the best perfor-
mance, surpassing both regular HTM and traditional locks. HTM
in particular is likely to fail (here due to contention, but conceiv-
ably also due to cache overflow or I/O), and the prefetching of
AAHTM provides a real benefit by warming up the cache. Note
that under non-optimal circumstances, AAHTM doesn’t signifi-
cantly hurt performance relative to a simple lock, but might deliver
significantly worse performance than traditional HTM.

2.2 Implementation
We envision an implementation of always-abort HTM with two
new instructions, AAHTM BEGIN, which begins a new always-abort
transaction, and AAHTM TEST, which tests to see whether the thread
is currently in an always-abort transaction (our instructions are
analogous to Intel’s TSX instructions XBEGIN and XTEST). We ex-
pect that other HTM instructions, such as XABORT, should work as
normal within an always-abort transaction, but an XEND commit in-
struction is unsupported within an AAHTM transaction and results
in an abort. Always-abort transactions will also abort wherever a
normal HTM transaction would fail, such as at an unsupported in-
struction, or on interrupt or cache overflow.

The primary hardware cost for always-abort HTM is an extra
architectural state bit per hardware thread indicating that the trans-
action underway must abort. This bit is set by the AAHTM BEGIN
instruction when it begins a new always-abort transaction, and is
queried by AAHTM TEST. The only additional cost is a small amount
of logic to verify, before committing a transaction, that the always-
abort flag is not set.



3. Designs
We have developed implementations of synchronization primitives
that use always-abort HTM as an alternative to busy waiting. Ex-
actly how to incorporate the new HTM technique is not always ob-
vious. In particular, our experiments revealed two important design
considerations. The first consideration is that the value of prefetch-
ing declines with time: if a thread that has performed an AAHTM
prefetch does not get to execute its “real” code soon, the prefetch
may be wasted, as prefetched cache lines are stolen and overwritten
by the lock holder or simply displaced by other lines. The second
consideration is that it is best to limit the number of threads concur-
rently prefetching, especially when waiting for a lock. Since their
write sets may overlap, concurrent AAHTM transactions may re-
sult in early aborts, negating the prefetching advantage. In general,
it seems better to limit the number of prefetchers, particularly if (in
keeping with the first consideration) threads that do prefetch have
priority access to the critical section when the lock becomes avail-
able.

3.1 Busy-wait Alternative
The above considerations notwithstanding, always-abort HTM can
be used as a simple drop-in replacement for busy-waiting. Some
simple designs are shown in Figure 2, including an extension to
pthread mutex and a test-and-set lock. Basically, if a thread
would normally busy-wait, it enters an always-abort transaction
instead. When the transaction eventually fails, it checks to see
whether it can exit its busy wait. If it needs to wait again, it can
either retry the always-abort transaction (to try to prefetch further
in its speculation) or fall into the normal busy-wait.

3.2 Test-and-Test-and-Set Priority Lock
The test-and-test-and-set lock of Figure 2 incorporates AAHTM,
but exerts little control over the waiting threads. In particular, ar-
bitrary numbers of threads might speculatively prefetch, increasing
early aborts and diminishing the utility of the technique. Further-
more, once a thread has completed its prefetch, it might not ac-
quire the lock for a while, conceivably negating the prefetch’s ben-
efits. To solve these problems, we designed a slightly more compli-
cated test-and-test-and-set lock (Figure 3) which strictly prioritizes
threads that have completed their prefetch and limits the number
of concurrently speculating threads. This lock uses two counters:
one (num spec) tracks the number of currently active speculative
threads; the other (num ready) tracks the number of threads that
have completed speculating. If num ready is non-zero, no thread
that has not yet speculated can acquire the lock.

3.3 Ticket Lock
The test-and-test-and-set priority lock presented above provides a
number of advantages over simple busy-wait elision. However, test-
and-set locks in general are unfair, and the presented priority design
is no exception. It is possible for a thread to fail to get the lock
indefinitely by repeatedly losing the tatas attempt. To provide
fairness to waiting threads, other locks may be used—for instance,
the ticket lock [17].

In a traditional ticket lock, threads increment two counters:
next ticket and now serving. A thread that wishes to acquire
the lock atomically increments the next ticket counter. It then
spins on the now serving counter. When the counter matches the
ticket number obtained from next ticket, the thread has acquired
the lock. Upon exiting its critical section, the thread increments the
now serving counter, passing the lock to the next thread in line.
Figure 4 shows the implementation of a ticket lock with always-
abort HTM. An advantage to the ticket lock is that there is a fixed
order in which threads will pass through the lock. Consequently,
we can delay speculation until we are close to acquiring the lock by

1 // we emulate AAHTM using
2 // regular Intel x86 HTM.
3 #define AAHTM_BEGIN \
4 XBEGIN
5 #define AAHTM_TEST \
6 XTEST
7

8 // how we enter AAHTM
9 int enter_aahtm(){

10 if(AAHTM_BEGIN()
11 == HTM_SUCCESSFUL)
12 return 1;
13 // abort
14 return 0;
15 }
16

17 // used for both simple and
18 // prioritized tatas lock
19 struct tatas_lock_t {
20 union{
21 struct{
22 int32_t held;
23 int16_t num_ready;
24 int16_t num_spec;
25 };
26 int64_t all;
27 };
28 };
29

30 // tatas lock with AAHTM
31 // as busy wait-alternative
32 void tatas_lock_aahtm
33 (tatas_lock_t *lk) {
34 if(AAHTM_TEST()){return;}
35 int tries = 0;
36 while(lk→held||
37 tas(&lk→held)){
38 // if lock is held,
39 // start speculating

40 if(enter_aahtm()){return;}
41 else{tries++;}
42 // revert to the lock
43 // if out of tries
44 if(tries≥NUM_TRIES){
45 while(lk→held||
46 tas(&lk→held))
47 pause(INTERVAL);
48 break;
49 }
50 }
51 }
52 void tatas_unlock_aahtm
53 (tatas_lock_t *lk) {
54 if(!AAHTM_TEST())
55 lk→held = 0;
56 }
57

58 // pthreads lock with AAHTM
59 // as busy wait-alternative
60 void pthread_lock_aahtm
61 (pthread_mutex_t *lk) {
62 if(AAHTM_TEST()){return;}
63 int tries = 0;
64 while(pthread_mutex_trylock(lk)
65 6=0){
66 if(enter_aahtm()){return;}
67 else{tries++;}
68 if(tries≥NUM_TRIES){
69 pthread_mutex_lock(lk);
70 break;
71 }
72 }
73 }
74 void pthread_unlock_aahtm
75 (pthread_mutex_t *lk) {
76 if(!AAHTM_TEST())
77 pthread_mutex_unlock(lk);
78 }

Figure 2: Busy-wait alternative

80 // tatas priority lock
81 // with AAHTM
82 void tatas_prio_lock_aahtm
83 (tatas_lock_t *lk) {
84 if(AAHTM_TEST()){return;}
85 int tries = 0;
86 tatas_lock_t cp;
87 while(true){
88 cp.all = lk→all;
89 if(cp.num_ready==0){
90 if(!lk→held&&
91 !tas(&lk→held))
92 break;
93 }
94 if(cp.num_spec<MAX_SPECS){
95 int tmp;
96 tmp=fai(&lk→num_spec,1);
97 if(tmp≥MAX_SPECS)
98 fai(&lk→num_spec,-1);

99 else if(enter_aahtm())
100 return;
101 else{
102 fai(&lk→num_spec,-1);
103 fai(&lk→num_ready,1);
104 while
105 (lk→held||
106 tas(&lk→held)){}
107 fai(&lk→num_ready,-1);
108 break;
109 }
110 }
111 pause(INTERVAL);
112 }
113 }
114 void tatas_prio_unlock_aahtm
115 (tatas_lock_t *lk) {
116 tatas_unlock_aahtm(lk);
117 }

Figure 3: Test-and-set lock with priority



118 struct ticket_lock_t {
119 int next_ticket;
120 int now_serving;
121 };
122 void ticket_lock_aahtm
123 (ticket_lock_t *lk) {
124 if(AAHTM_TEST()){return;}
125 int tries = 0;
126 int my_ticket =
127 fai(&lk→next_ticket, 1);
128 int dist = 0;
129 while((dist=(my_ticket-
130 lk→now_serving))>0){
131 if(dist≤MAX_DIST &&
132 dist≥MIN_DIST &&
133 tries<NUM_TRIES){

134 if(enter_aahtm())
135 return;
136 else{
137 busy_wait();
138 tries++;
139 }
140 }
141 else
142 pause(INTERVAL);
143 }
144 }
145 void ticket_unlock_aahtm
146 (ticket_lock_t *lk) {
147 if(!AAHTM_TEST())
148 lk→now_serving++;
149 }

Figure 4: Ticket lock

150 struct barrier_t {
151 int total;
152 // number of threads
153 // to wait for
154 int gen;
155 // generation counter
156 // with flags in low bits
157 char[] padding;
158 // padding to avoid
159 // false sharing
160 int awaited;
161 // number of threads
162 // at the barrier
163 };
164 void barrier_wait
165 (barrier_t *bar){
166 int state = bar→gen;
167 if(fai(&bar→awaited,-1)==0){
168 bar→awaited=bar→total;
169 state+=1;
170 bar→gen = state;

171 return;
172 }
173 int gen=state;
174 int tries=0;
175 do{
176 if(bar→gen==gen){
177 tries++;
178 if(enter_aahtm()){
179 if(bar→gen 6=gen)
180 XABORT();
181 else
182 return;
183 }else{
184 if(tries<NUM_TRIES)
185 continue;
186 else
187 pause(INTERVAL);
188 }
189 }
190 gen = bar→gen;
191 }while(gen6=state+1);
192 }

Figure 5: Barrier (heavily based on GNU libGOMP)

monitoring the now serving counter. With a similar mechanism,
we can also control how many threads are concurrently speculating.

3.4 Barrier
In addition to locks, always-abort HTM is useful for barriers. Once
early threads have reached the barrier, they can speculate into the
next phase of execution while waiting for the straggling threads.
There are two major design points to note. First, in contrast to locks,
the speculation is generally restricted to local data; no data races
typically exist within a barrier phase. Consequently, the likelihood
of a conflict between concurrently speculating threads is very low;
the only conflicts that are likely to occur are between the specu-
lating threads and the straggling threads that have yet to reach the
barrier. Second, the design of our barrier, based heavily on the GNU
libGOMP implementation, also allows us to avoid false sharing be-
tween the arriving thread counter (awaited) and the release signal
(gen). Consequently, upon entering the always-abort transaction,
we can subscribe to the release signal and abort our transaction im-
mediately once all threads arrive.

4. Evaluation
Our experiments were conducted on a 18-core Intel Xeon E5-
2697 v4 (Broadwell) machine running Linux kernel version 3.10.0.

Code was compiled with gcc 5.3.0 using the -O3 optimization flag.
Reported results show the average of three runs at each configu-
ration point, and no major performance variation was seen across
runs.

4.1 Locks
Our lock library is implemented as a dynamically loaded library
that overwrites the pthread synchronization functions. The library
is linked in via LD PRELOAD at run time. Within our lock library, we
implemented several mutex alternatives:

tatas: An exponential back-off test-and-test-and-set lock.
ticket: A FIFO ticket lock with linear back-off proportional to

the distance to the lock owner.
htm-1, htm-10: Simple uses of HTM, similar to lock elision,

that try the transaction either one or ten times before falling back
to the tatas lock.

tatas-aahtm: The trivial AAHTM test-and-test-and-set lock of
Section 3.1. We set NUM TRIES to 4 based on experimentation for
reasonable parameters for generic workloads.

tatas-pri-aahtm: The prioritizing AAHTM test-and-test-and-
set lock of Section 3.2. We set NUM TRIES to 4 and MAX SPECS
to 1.

ticket-aahtm: The AAHTM ticket lock of Section 3.3. We set
NUM TRIES and MAX DIST to 4 and MIN DIST to 2.

We ran our locks on several microbenchmarks and real-world
applications. ArrayBench (Figure 6) is the microbenchmark we
introduced in Section 2.1. In it, threads contend to access an integer
array with one million elements. Each thread generates addresses
to touch within the array before contending to enter the critical
section. Tests run for approximately five seconds. The test has two
parameters—size and contention level. The size parameter refers to
the number of writes in each critical section; the low size touches
ten, the high size touches one hundred. Under low contention,
threads write to all their addresses and then leave. Under high
contention, all threads first touch the zeroth array element at the
beginning of the critical section before touching the rest of their
addresses. For this test we also explored an optimized variant of
each lock (marked opt in Figure 6) which, when executing under
AAHTM, employs an alternative code path that elides the high
contention write to maximize prefetching gains.

The results of this benchmark are promising for always-abort
HTM. An AAHTM primitive is the best option in three of the four
configurations, and is only beaten by htm-10 on the low contention,
small footprint configuration (Figure 6a). For configurations on
which it wins, AAHTM outperforms the nearest alternative by 10
to 200%. The AAHTM ticket lock appears to be the best option
for large footprint tests, likely due both to its well-known tendency
to mitigate lock contention and to its orderly control of prefetch-
ers. The benefit of the prefetching is clearly seen in the large foot-
print configurations: the AAHTM ticket lock outperforms its non-
prefetching variant by 2 to 3× in these tests. For smaller footprint
tests, prefetching becomes less important, and the test is instead
limited by the fairness of the lock. The unfairness of the test-and-
test-and-set implementations give them an advantage over the fair
ticket locks by allowing repeat acquisitions that reduce cache line
movement. Finally, note that HTM is the best option only when
contention is low and the footprint is small; even so, the retry pa-
rameter is extremely important: htm-1 is outperformed by the locks
due to spurious aborts.

In MapBench (Figure 7) we once again contend on a global
data structure—this time, a std::map<int,int> (red-black
tree). Within its critical section, each thread does a single oper-
ation on a randomly chosen key within the key space. The test has
two configuration parameters. The first is the size of the key space:
either 10K or 10M keys. During initialization, the map is filled with
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Figure 6: Throughput (critical sections per second) of ArrayBench
on Broadwell Xeon.
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Figure 7: Throughput (operations per second) of MapBench on
Broadwell Xeon.

50% of all possible keys. The second configuration parameter is the
ratio of find/insert/delete operations; we test both 80%/10%/10%
and 0%/50%/50% configurations. Since the map is half full at ini-
tialization, these ratios result in 10% and 50% writes respectively.
Each test runs for approximately five seconds.

Once again in this benchmark, we see the benefit of AAHTM,
but under more specific conditions. Since the critical sections are
so small, and mostly read-dominated, traditional HTM works well
in most cases. However, when the write percentage goes up and the
tree size grows, HTM becomes less likely to succeed. In such cases,
it is useful to prefetch tree state while waiting for the lock, and the
AAHTM ticket lock again dominates (Figure 7d).

193 #pragma omp parallel {
194 ...
195 for (int task = ...) {
196 for (int i = ...) {
197 int row = perm[i] + base;
198 double sum = b[row];
199 for (int j = rowptr[row + 1] - 1; j ≥rowptr[row]; --j)
200 sum -= values[j]*y[colidx[j]];
201 y[row] = sum;
202 } // for each row
203 #pragma omp barrier
204 } // for each level
205 } // omp parallel

Figure 8: Code skeleton of BackwardSolver.

input offshore.mtx (75) inline 1.mtx (288) thermal2.mtx (991)
thd # baseline aahtm speedup baseline aahtm speedup baseline aahtm speedup

1 2.28 2.28 0.00% 3.18 3.18 0.00% 3.83 3.83 0.00%
2 3.87 4.02 3.88% 6.16 6.19 0.49% 3.50 3.51 0.29%
4 5.84 6.75 15.58% 11.26 11.40 1.24% 5.92 6.51 9.97%
8 7.14 8.01 12.18% 19.99 20.53 2.70% 10.46 11.66 11.47%

12 6.40 7.09 10.78% 26.55 27.09 2.03% 13.67 14.97 9.51%
16 5.27 5.43 3.04% 31.60 33.42 5.76% 14.77 16.37 10.83%

Table 1: Throughput of BackwardSolver (measured as GB/sec) for
three input matrices with different degrees of parallelism. baseline
uses the default GOMP barrier. aahtm uses the AAHTM enhanced
barrier (see Section 3.4).

4.2 Barrier
We evaluate our AAHTM-based barrier (described in Section 3.4)
using BackwardSolver, an implementation of a backward sparse
triangular solver based on level-scheduling with barriers [19]. As
shown in the code skeleton of Figure 8, in order to properly handle
task dependency, there is a barrier between two successive task lev-
els in the main loop (line 203). Due to the non-uniform distribution
of elements in sparse matrices, tasks processed by different threads
have different lengths, resulting in idle threads at each barrier point.

With the AAHTM-based barrier, those waiting threads are able
to speculatively cross the synchronization point to process their
tasks in the next loop iteration. Since accesses to the major ma-
trix structures (values) generally have poor spatial locality and are
read-dominated (line 200), AAHTM transactions can effectively
bring in data that would otherwise be cache misses. If the specu-
lating threads have more work than average in the next iteration,
overall performance improves (up to 15%).

Table 1 presents the performance results of BackwardSolver
for three input matrices from the University of Florida Sparse
Matrix Collection. For offshore.mtx and thermal2.mtx, we
see significant performance improvement when using the AAHTM
barrier.

5. Related Work
In proposing always-abort HTM we are building upon two impor-
tant lines of prior research: hardware transactional memory and
thread-level speculation.

Transactional memory was proposed by Herlihy and and Moss
[11] as a hardware mechanism to simplify the construction of con-
current data structures. Subsequent work has explored both hard-
ware and software implementations. In recent years, hardware im-
plementations have appeared in mainstream processors from In-
tel [10] and IBM [1, 13]. As result of its wide availability, HTM
has been incorporated into a variety of synchronization libraries
and general applications. Lock elision is a common use case for



HTM [20]; it is a technique in which lock-protected critical sec-
tions are instead run optimistically under HTM to achieve finer-
grain conflict detection. More complex runtimes also elide locks
with additional optimistic software synchronization techniques in
conjunction with HTM [7]. HTM and software transactional mem-
ory have also been used together in hybrid systems [4, 8, 16]. Be-
yond standard HTM, looser HTM primitives have also been pro-
duced. IBM’s rollback only transactions remove read tracking from
transactions, reducing the size and abort rate of transactions at the
expense of semantics [1]. Similar relaxations of the read/write set
tracking of HTM are proposed elsewhere [21]. Always-abort trans-
actions with such relaxed semantics could perform better than our
proposed AAHTM due to a lower conflict rate.

Hardware speculation is ubiquitous in modern processors,
which execute instructions across predicted branches, prefetch data
into cache based on observed access patterns, and even guess the
values to be returned by load misses. Thread-level speculation is
a natural extension that seeks to exploit predictable behavior at a
somewhat coarser grain. Always-abort HTM strongly resembles
the thread-level hardware speculation of more ambitious proces-
sors. In hardware scouting (or runahead execution), for example,
a checkpoint is taken on a load miss, and the processor continues
speculatively. Within the speculative execution, no state is commit-
ted, and processing of instructions continues, bypassing additional
load misses as necessary and using the predictors for branches,
until the missed data is fetched. At this point all speculative state
is wiped and the processor continues, but with the advantage of
a warmed-up data cache, instruction cache, and branch predic-
tor [2, 9, 18]. Simultaneous speculative threading expands on this
idea to allow some independent state from the hardware scout to
commit once the load is fulfilled; this more advanced technique was
incorporated into Sun’s Rock processor [3]. Our uses of AAHTM
resemble scouting across a lock acquisition rather than a load miss.

6. Conclusion
Given its potential utility and negligible implementation cost, we
believe that always-abort HTM would be an attractive feature to
include in future HTM implementations. For high contention and
large critical sections, it is an excellent way to easily improve
performance.

In ongoing work, we are exploring additional ways to use
AAHTM, and looking for real-world programs that will benefit
from its use. We are particularly interested in using always-abort
HTM to elide other types of busy-waiting, such as that incurred
when using synchronous communication (e.g., RDMA or MPI) or
on-chip hardware accelerators (e.g., as in IBM’s PowerEN [15]).
We are also interested in using queue- and stack-based locks to
prioritize speculating threads, and in adding AAHTM to other syn-
chronization primitives such as condition variables.
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