
POSTER: Nonblocking Persistent Software
Transactional Memory

H. Alan Beadle, Wentao Cai, Haosen Wen, and Michael L. Scott

University of Rochester

Rochester, NY, USA

{hbeadle,wcai6,hwen5,scott}@cs.rochester.edu

Abstract
While developed largely for higher density and lower power,

byte-addressable nonvolatile memory can also allow data

to persist across program runs and system crashes without

the need to flush to disk or flash. If data is to be recovered

after a crash, however, care must be taken to ensure that the

contents of memory are consistent at all times. This can be

challenging in multithreaded applications with write-back

caches. We present QSTM, a persistent word-based software

transactional memory (STM) system to address this problem.

Unlike past such systems, QSTM is nonblocking and does

not require either the modification of target data structures

or the use of a wide CAS instruction.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; •Hardware→Non-volatilememory.

1 Introduction and Overview
The past 16 years have seen the development of dozens of

software transactional memory (STM) systems—far toomany

to cite here. Most have been lock-based or otherwise block-

ing. Perhaps a dozen have been nonblocking; of these, most

but not all have tracked conflicts at object granularity—they

have been object-based rather than word-based.

The past 8 years have seen the development of several

persistent STM systems, whose transactions are not just iso-

lated and consistent, but also atomic and durable in the

face of whole-system crashes. Only one of these systems—

OneFile [4]—is nonblocking, and it has some serious limita-

tions: it allocates a full word of metadata next to every word

of “real” data, complicating data declarations, imposing 2×
space overhead, and necessitating the use of a wide CAS

instruction.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6818-6/20/02.

https://doi.org/10.1145/3332466.3374502

Our QSTM system is also word-based and persistent, but

avoids the metadata-related limitations. It draws partial in-

spiration from the (transient) RingSTM system [5] but with a

redo log based on the persistent lock-free queue of Friedman

et al. [2]. Each entry in QSTM’s log represents a transaction,

with a unique timestamp, a status (not_writing, writing,
or complete), a Bloom filter of the locations written, and

a pointer to a detailed write set. Each ongoing transaction

maintains both read and write filters, but only the write fil-

ter is written into the queue entry. Transactions validate by

checking for intersections between their read filter and the

write filters of all transactions that have committed since

the validating transaction started. If such an intersection

exists then the transaction must abort. The validation step

is performed during each transactional read operation and

is repeated one more time before attempting to commit.

A thread commits by persisting a queue entry and then

durably enqueueing it. Queue entries are kept until their

respective writes have been performed and persisted, and

then the entry can be freed or reused. Note that if an en-

try is removed before an ongoing transaction has a chance

to validate against it then the transaction must abort. In

our implementation ongoing transactions reserve entries by

timestamp. To prevent a slow or stopped transaction from

reserving too many entries these reservations can safely be

ignored when the queue grows too large.

To allow any thread to perform the writes and flushes

of any committed transaction, each queue entry contains a

pointer to the corresponding write set. Since values can be

read directly out of these write sets, other threads do not

need to wait for write-back completion to make progress.

If we allowed multiple threads to concurrently perform

writeback, then any writes occurring after the first thread

has finished could cause an inconsistent state to be visible to

the other threads (that is, an earlier write might undo a later

write from the same transaction while the record is already

marked as complete). We solve this problem by locking a

queue entry before performing the writes, and by performing

write-back serially in order of commit time. The state field

in each queue entry is used to indicate the progress of the

write-back and as a lock.

This work was supported in part by NSF grants CCF-1422649, CCF-1717712,

and CNS-1900803, and by a Google Faculty Research award.

https://doi.org/10.1145/3332466.3374502


PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Beadle et al.

If a thread stalls while holding a lock for write-back, the

queue will begin to grow longer with each commit but ap-

plication progress will not be prevented. Additional trans-

actions can continue to commit indefinitely. In practice this

could result in unbounded memory usage, but nonetheless

provides nonblocking progress (assuming enough memory is

available). The memory usage problem can be solved by any

mechanism that supports bounded-time completion of the

write-back since the problem occurs only if a thread stalls

while performing write-back.

In addition to the usual head and tail queue pointers,

QSTM maintains a complete pointer that refers to the most

recent queue entry that is known to be marked complete;

this pointer is used during validation traversals.

After a crash, it is necessary only to recover the head

pointer and any entries that can be reached from it (in addi-

tion to any persistent memory used by the application, but

this is application-specific). All other memory formerly used

by QSTM can be reclaimed. The writes in recovered entries

must be performed and persisted and the queue reinitialized

to contain a single dummy entry for execution to resume.

2 Performance and Usability
We compare the performance of QSTM to that of OneFile [4]

using a hashmapmicrobenchmark includedwithOneFile but

with some modifications. In the original version writers used

two separate transactions to delete and replace a key while in

our version these operations share a single transaction. We

also ran a version in which writers replaced ten keys in each

transaction to observe the effect of larger transactions. QSTM

was configured to use 128-byte Bloom filters and used the

Makalu [1] persistent memory allocator. These tests used 50%

writer transactions and 50% reader transactions. We tested

both the lock-free and wait-free versions of OneFile, shown

in the figure as OneFile-LF and OneFile-WF respectively.

We had also hoped to retrofit existing transactional bench-

marks to use OneFile, but ran into significant difficulties

with the API. All OneFile persistent data structures must be

declared using special reserved words to allocate metadata

adjacent to every word of “real” data. OneFile transactions

then take the form of C++ lambdas, and transactional field

accesses rely on operator overloading to update the metadata.

These conventions are not particularly onerous for newly

designed data structures, but proved difficult to retrofit into

code originally developed for transient data.

OneFile usually achieves higher throughput than QSTM,

especially when transactions are small. This is because of

the smaller number of steps required to commit a OneFile

transaction and the larger amount of contention on QSTM’s

global log. OneFile’s advantage, however, shrinks with larger

transactions (right subfigure), because QSTM allows any

number of transactions to commit while some other transac-

tion is performing write-back, while OneFile serializes this

Hash Map throughput: 1 write/txn (L), 10 writes/txn (R)

sequence. Significantly, OneFile’s use of per-word metadata

also imposes nearly 2× space overhead relative to QSTM.

3 Conclusions and Future Work
Nonblocking progress sets QSTM apart from most previ-

ous persistent TM systems. QSTM also consumes much less

space than OneFile, and requires neither a wide CAS instruc-

tion nor changes to data structure declarations. OneFile has

higher throughput, but both systems have a serial bottleneck

that limits scalability. We hope in future work to develop a

more scalable nonblocking persistent STM. We also hope to

mitigate the potential for unbounded memory usage when a

QSTM thread blocks while performing writes. One step may

be to use a protected library such as Hodor [3] to enforce

QSTM as the sole accessor to a memory region and to guar-

antee timely completion of QSTM write-back operations,

despite preemption or process crashes.

References
[1] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recover-

able allocation of non-volatile memory. In 31st Conf. on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA), Amster-

dam, The Netherlands, Nov. 2016.

[2] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank. A persistent

lock-free queue for non-volatile memory. In 23rd Symp. on Principles
and Practice of Parallel Programming (PPoPP), Vienna, Austria, Feb. 2018.

[3] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,

and M. Marty. Hodor: Intra-process isolation for high-throughput data

plane libraries. In 2019 USENIX Annual Technical Conf. (ATC), Renton,
WA, July 2019.

[4] P. Ramalhete, A. Correia, P. Felber, and N. Cohen. Onefile: A wait-

free persistent transactional memory. In 49th IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks (DSN), Portland, OR, June 2019.

[5] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable trans-

actions with a single atomic instruction. In 20th Symp. on Parallelism
in Algorithms and Architectures (SPAA), New York, NY, June 2008.


	Abstract
	1 Introduction and Overview
	2 Performance and Usability
	3 Conclusions and Future Work
	References

