
Persistent Memory Analysis Tool (PMAT)

Louis Jenkins and Michael L. Scott
Computer Science Department, University of Rochester
{louis.jenkins@rochester.edu, scott@cs.rochester.edu}

Abstract— Intel’s Persistent Memory Development Kit
(PMDK) provides two separate tools—pmreorder and
pmemcheck—that allow the programmer to explore and verify
the consistency of possible states that may be present in
persistent memory in the wake of a crash, given that caches
may write back values out of order. Unfortunately, these tools
are heavy-weight and inefficient, and so we have developed
the Persistent Memory Analysis Tool (PMAT), derived from
pmemcheck, that enables the simulation and verification of
hundreds to thousands of crashes per second for programs of
significant size, for an improvement of at least three orders of
magnitude.

I. INTRODUCTION AND RELATED WORK

Intel’s Persistent Memory Development Kit (PMDK) [5]
provides two tools to verify the crash consistency of persis-
tent applications. The first of these, pmemcheck, is a plugin
for Valgrind [2]. It traces all stores and flushes to marked
persistent regions, together with all store/memory fences.
Valgrind performs dynamic recompilation on-the-fly, insert-
ing desired instrumentation. In comparison to source-based
tools, recompilation significantly increases coverage, encom-
passing even third-party binary-only libraries. Valgrind tends
to be significantly slower than normal execution, not only
due to the cost of recompilation and of instrumentation, but
also because it serializes multi-threaded applications, running
only one thread at a time. At the same time, it introduces
context switches with sufficient frequency and irregularity to
manifest most of the races that would occur during normal
execution.

The pmemcheck tool uses Valgrind to trace at the granular-
ity of individual stores. It keeps these stores (and flushes and
fences) in a somewhat expensive internal structure that allows
it to check for potentially erroneous idioms such as repeated
(unflushed) stores to the same persistent location. More
problematically, for programmers interested in consistency, it
logs the trace to a file for subsequent perusal by pmreorder,
the second tool mentioned above. Logging leads to both an
I/O bottleneck and, for programs of realistic size, potentially
enormous files.

The pmreorder tool processes a pmemcheck trace and
generates alternative store orders that are consistent with
the flushes and fences. These are orders that could have
occurred due to out-of-order writeback from the last-level
cache. Because the set of possible reorders is exponentially

This work was supported in part by NSF grants CCF-1422649, CCF-
1717712, and CNS-1900803; by a Google Faculty Research award; and by
a US Department of Energy Computational Science Graduate Fellowship
(grant DE-SC0020347).

large, pmreorder allows the user to choose from among
a variety of “reordering engines,” which embody various
sampling strategies. Each sampled ordering is then used to
create a memory image that is passed to a user-provided veri-
fication (consistency-checking) function. The overall goal—
sampling possible memory images and checking them for
consistency—is hampered both by the separation of trace
generation and reordering and by inefficiencies in the re-
ordering mechanism. To address both of these problems, we
introduce a Persistent Memory Analysis Tool (PMAT) that
integrates consistency checking into pmemcheck, eliminating
the need for tracing. The result is a dramatic increase in
performance.

II. DESIGN AND IMPLEMENTATION

Unlike the original pmemcheck, PMAT aggregates stores
to persistent locations into fixed sized cache lines, which are
then fed to a bounded, software-simulated CPU cache and
reorder buffer. When the number of written lines exceeds the
cache capacity, lines are evicted at random. They are also
evicted in response to flushes in the application (and written
back without evicting in response to write-back instructions).
Evicted and written-back lines are fed to the reorder buffer,
which can in turn randomly permute its in-flight lines subject
to limitations imposed by fence instructions. Lines that
graduate out of the reorder buffer are written to a shadow
heap of the same size as the persistent memory region
originally declared by the user. In order to capture all stores
to persistent locations, regardless of where they occur in
the source code, we currently instrument all stores and filter
them by address. While this is expensive, we see no practical
alternative in the absence of language and compiler support
for persistence.

Whenever a store or flush is made to an address inside a
persistent memory region, and before and after any fence
is performed, PMAT chooses, with small probability, to
simulate a crash and to pass the contents of the shadow
heap to a user-provided verification function, much as in
pmreorder. A user may also explicitly simulate a crash,
and may even disable the randomized crash simulation—
e.g., when initializing data, or to incrementally introduce
the testing tool to the code base to avoid simulating crashes
during parts of execution not yet supported by the verification
function.

The verification function, provided by the user as a stand-
alone program, takes as argument the name of a file in which
to find the shadow heap. As an optimization, the user may

scott
Text Box
Exteded abstract to accompany poster at NVMW'20



mark portions of the persistent memory as “transient,” in
response to which PMAT will ignore stores to that region, on
the assumption that it will also be ignored by the verification
function. For use in source-code assertions, PMAT also
allows the user to query whether a line is currently dirty
in the simulated cache or re-order buffer (implying it has
not been written back and fenced).

If a verification fails, the user is provided the contents
of stderr, stdout, and the stack trace for the last store to
each cache line that has not been flushed or fenced, each
as their own file. This information can significantly aid in
determining the root cause of the problem in the application.
Also provided is the shadow heap itself, which can be further
analyzed and even loaded into memory.

#include <valgrind/pmat.h>

// Persistent Memory Region API
PMAT_REGISTER("dummy.bin", addr, len);
PMAT_UNREGISTER_BY_ADDR(addr);
PMAT_UNREGISTER_BY_NAME("dummy.bin");
PMAT_TRANSIENT(addr, len);
PMAT_IS_DIRTY(addr, len);

// Crash Simulation API
PMAT_CRASH_DISABLE();
PMAT_CRASH_ENABLE();
PMAT_FORCE_CRASH();

III. EXPERIMENTS

The current release of pmreorder includes a single example
application, called pmreorder list [1]. This example embod-
ies a singly linked list that has been deliberately designed to
perform an arbitrary number of inconsistent (i.e., incorrect
from the perspective of persistence) insertions. We use this
example to compare (Figure 1) the performance of PMAT
to that of pmemcheck + pmreorder, with the latter using
Intel’s comparatively lightweight ReorderPartial engine. To
highlight the constituent costs of the Intel tools, we also
show individual times for pmemcheck and pmreorder. For a
given list size, the costs of pmemcheck and pmreorder sum
to that of the combination, but pmreorder overwhelmingly
dominates (orange and red dots overlap in the figure).

Given limited time for experimentation, we set a timeout
of 5 hours on every program run. The pmreorder tool reaches
this limit at a list size of only 128K nodes. The much faster
pmemcheck is still able to accommodate only 512K nodes.
PMAT, by contrast, can process a list of 1M nodes in just
under a half an hour when set to simulate a crash with
probability 0.01 after each store, flush, and before and after
each fence. During the half-hour run, it simulated over 62
thousand crashes—41 of them per second. Approximately
1/3 of the crashes revealed an inconsistency. Calls to the
verification function consumed a mean time of 5.88ms each.

By design, pmreorder list flushes stores out of order:
the value of each new node is flushed after it is inserted
into the list. PMAT has no trouble discovering this error.
Interestingly, the frequent flushes mean that the benchmark
doesn’t actually stress the simulated cache and write buffer.

Fig. 1. pmat vs pmemcheck + pmreorder

In our experience, pmemcheck and pmreorder have been
too slow to use in any larger, more realistic application. To
further test PMAT, however, we have experimented with the
durably linearizable queue of Friedman et al. [3]. Manually
injected errors in this application were found in a matter of
minutes.

IV. FUTURE WORK

While the performance of PMAT is far superior to that
of pmemcheck + pmreorder, there are multiple areas for
improvement and enhancement. The thread serialization in-
herent in the Valgrind virtual machine means that only
one core will be active in a given test. This suggests the
possibility, on a multicore machine, of running verification
(or multiple verifications) in parallel with the application.
Furthermore, while PMAT already allows the programmer to
query whether a line has been persisted, it may be worthwhile
to provide additional assertions on ordering constraints in a
manner similar to PMTest [4]. Given the inherent difficulty
in writing verification checkers for larger applications, this
approach may allow certain classes of errors to be found
with less programmer effort.

REFERENCES

[1] pmreorder GitHub repository. https://github.com/pmem/pmdk/tree/stable-
1.7/src/examples/pmreorder.

[2] Valgrind. https://valgrind.org/.
[3] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-

trank. A persistent lock-free queue for non-volatile memory. In Proc.
of the 23rd ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP), pages 28–40, Vienna, Austria, 2018.

[4] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. PMTest: A fast and flexible testing framework for persistent
memory programs. In Proc. of the 24th Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
pages 411–425, Providence, RI, March 2019.

[5] Usharani U. and Andy M. Rudoff. Introduction to programming with
Intel Optane DC persistent memory. https://software.intel.com/en-
us/articles/introduction-to-programming-with-persistent-memory-from-
intel, August 2017.




