
Building Fast Recoverable Persistent Data Structures
Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

{hwen5,wcai6,mdu5,ljenkin4,bvalpey,scott}@cs.rochester.edu

1. Introduction

Beginning with Mnemosyne [8] and NV-Heaps [2] a decade
ago, and continuing with such recent offerings as Pronto [6],
many systems have been devised to support failure-atomic
operations on data structures located in byte-addressable non-
volatile memory (NVM). All of these systems, to the best
of our knowledge, share the property that when an operation
completes and allows the caller to continue, the results are
guaranteed to survive a crash. This property implies that, be-
fore returning, each operation must explicitly write back its
stores and wait dozens or (depending on the hardware) even
hundreds of cycles for an acknowledgment from the memory
controller.

Figure 1 plots the throughput of several implementations of
a large concurrent hash table, running on a machine equipped
with Intel Optane NVM. Mnemosyne, the original transac-
tional system for persistent memory, peaks at about 230 thou-
sand operations per second. A conventional, transient table
in DRAM can sustain more than 50 million operations per
second—a difference of more than two orders of magnitude.
Pronto is about 6× faster than Mnemosyne, but still more than
40× slower than the DRAM table. We aim to bridge that gap.

We propose Montage, a general system for building fast
recoverable data structures. It embodies two key insights:
First, an operation need not persist everything it modifies;
rather, it can persist just enough information to allow the data
structure to be recovered after a crash. Second, an operation
need not persist before returning, so long as post-recovery
system state is guaranteed to reflect a consistent prefix of
pre-crash execution.

The first insight appears, for specific data structures, in
several prior projects like MOD [3] and SOFT [10]. From a
certain perspective, it might also be said to appear in Pronto.
We explain how to embed it in a general-purpose system,
applicable to arbitrary structures.

The second insight embodies the notion of buffered durable
linearizability, a relaxed correctness criterion suggested (with-
out concrete examples) by Izraelevitz et al. [4]. It also reflects
long-standing practice in the HPC community, where peri-
odic checkpoints allow an application to bound the amount
of work that may be lost on a crash. The Dalí hash map [7],
included in Figure 1, uses periodic persistence (buffering) to
achieve more than twice the throughput of Pronto, but in a
very data-structure–specific way. Montage again provides a
general-purpose solution, applicable to arbitrary structures. As
shown in Figure 1, our Montage hash map sustains well over
20 million operations per second on a read-heavy workload—

>>>

>>>
>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>

104

105

106106

107

108

1 10 20 30 40 50 60 70 80 90Threads

T
hr

ou
gh

pu
t (

op
s/

s)

>

DRAM (T)
NVM (T)
Montage (T)

Montage
SOFT
Dalí

MOD
Pronto−Full
Pronto−Sync

Mnemosyne

Figure 1: Hash table performance on a 2-socket, 80-thread ma-
chine (90% lookups). Note the log scale of the Y-axis.

7× faster than Dalí, 17× faster than Pronto, and within a factor
of 3 of the DRAM table’s throughput. This is close to the best
one could hope for: Optane read bandwidth is about 3× that
of DRAM.

Montage is designed to preserve the abstract state of a con-
current object without necessarily persisting its concrete state.
In a mapping, for example, it persists only a bag of key-value
pairs; the look-up structure (hash table, tree, skip list) lives
entirely in transient DRAM. Pre-crash execution employs a
slow-running epoch clock. It ensures that no operation appears
to span an epoch boundary, and these boundaries represent
a consistent cut across the linearization order of the object.
If a crash occurs in epoch e, Montage recovers the state of
the abstraction from the end of epoch e−2 and rebuilds the
concrete structure. Following the observation of Nawab et
al. [7], Montage discards e and e−1 if crashes in e to allow
operations in those epochs to overlap in time, avoiding the
need for quiescence. If an application needs to be sure that a
given operation has persisted (e.g., before confirming this to
a remote client via network communication), it can invoke a
sync() operation, which advances the epoch by 2.

2. Overview
Our implementation of Montage is built on top of Ralloc [1],
a lock-free allocator for persistent memory. The Montage
layer is also lock-free during normal operation, except for
epoch advances: if the data structure itself is nonblocking, a
stalled thread will not impede operations of its peers, but it
can indefinitely prevent those operations from persisting. (We
are currently developing mechanisms to make the progress of
persistence nonblocking as well.)

A typical Montage structure consists of a collection of pay-
load blocks in nonvolatile memory (NVM), together with a
(much smaller) index or other supporting structure in DRAM.
The global epoch clock is also kept in persistent memory. Each



payload block indicates the epoch in which it was created. A
block that was created in epoch e can be modified in place in
epoch e (under protection of whatever synchronization would
normally be used for the concurrent object). A block that was
created in epoch d < e is “modified” by replacing it with a
new block. The old block is reclaimed once the epoch counter
has advanced to e+2, at which point we know that the new
block will survive a crash. An old block can be semantically
deleted by replacing it with an “anti-block.”

An operation that is updating a block in epoch e must abort
and start over if it encounters a dependence upon any block
that was created in epoch e+ 1; this ensures that the epoch
boundary represents a consistent cut across the happens-before
relationship. Epoch advance from e to e+1 must wait until (1)
all blocks that were to be reclaimed in epoch e−2 have been
reclaimed, and (2) all operations that began in epoch e− 1
have completed and have persisted their updates.

Many details can be tuned for better performance. We
have generally obtained the best results by delaying all ex-
plicit writes-back until the end of the epoch, and perform-
ing both writes-back and memory reclamation in a dedicated
background thread. Performance remains essentially constant
across epoch lengths ranging from tens of microseconds to
hundreds of milliseconds.

We have implemented several data structures in Montage,
including queues, mappings based on hash tables and trees,
and general graphs with dynamic creation and deletion of ver-
tices and edges. In the wake of a crash, Ralloc helps Montage
iterate through all potentially in-use blocks in the heap, keep-
ing those that are not from the two most recent epochs. The
application then re-creates any needed transient structures.

Anecdotally, adapting a structure to Montage requires rel-
atively modest programmer effort beyond the creation of the
original concurrent object. Our C++ API provides operations
to begin and end a failure-atomic operation, to allocate and
deallocate payloads using Ralloc, and to get and set the fields
of payload objects. The programmer is responsible for ensur-
ing that each data structure operation linearizes in the epoch
in which its payloads were created. This is trivial with locks.
For nonblocking structures, we provide a special compare-and-
swap operation (based on the double-compare-single-swap of
Harris et al. [5]) that succeeds only if it can do so in the epoch
of the invoking operation.

3. Experimental Results
Montage’s performance generally exceeds that of prior general-
purpose systems by large multiplicative factors, and equals or
exceeds that of custom-designed persistent structures as well.
In the hash table results of Figure 1, only SOFT [10] provides
both persistence and better performance. Unfortunately, SOFT
is unable (at least as currently realized) to exploit the high
capacity of NVM—a copy of the entire structure must always
reside in DRAM. Moreover, SOFT, like Dalí, is not a general
purpose system, but a hash table that represents a set or map-

ping only. (And even as a mapping, it lacks an atomic replace
operation for existing keys.)

In the full-length paper on ArXiv [9] we describe Montage
in more detail; argue its correctness; explore its sensitivity to
various design decisions, workload characteristics, and thread
and memory placement; compare its performance to that of
prior art, including both special-purpose data structures and
general-purpose systems; document its recovery time; and
validate our hash table results on a full-scale rebuild of mem-
cached.

4. Conclusion
Montage is, to the best of our knowledge, the first general-
purpose system for buffered (periodically persistent) data struc-
tures in nonvolatile memory, and the first to facilitate persisting
only essential data, rebuilding the rest on recovery. In compari-
son to systems that are (strictly) durably linearizable, Montage
moves write-back and fencing off the critical path of the appli-
cation, allowing it to dramatically outperform existing special-
and general-purpose systems for persistence. Montage com-
bines this performance with very low conceptual complexity,
paving the way for future work that would embed persistence
in the programming language.

References
[1] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L.

Scott. Understanding and optimizing persistent memory allocation.
In 19th Intl. Symp. on Memory Management (ISMM), June 2020.
Poster/brief announcement presented at the 25th ACM Symp. on Prin-
ciples and Practice of Parallel Programming (PPoPP), San Diego, CA,
Feb. 2020.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson. NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In 16th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 105–118, Newport Beach, CA, 2011.

[3] S. Haria, M. D. Hill, and M. M. Swift. MOD: Minimally ordered
durable datastructures for persistent memory. In 25th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 775–788, Mar. 2020.

[4] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Intl. Symp.
on Distributed Computing (DISC), pages 313–327, Paris, France, Sep.
2016.

[5] H. T. L., F. Keir, and P. I. A. A practical multi-word compare-and-swap
operation. In 16th Intl. Symp. on Distributed Computing (DISC), pages
265–279, Toulouse, France, Oct. 2002.

[6] A. Memaripour, J. Izraelevitz, and S. Swanson. Pronto: Easy and
fast persistence for volatile data structures. In 25th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 789–806, Mar. 2020.

[7] F. Nawab, J. Izraelevitz, T. Kelly, C. B. M. III, D. R. Chakrabarti, and
M. L. Scott. Dalí: A periodically persistent hash map. In Intl. Symp.
on Distributed Computing (DISC), pages 37:1–37:16, Vienna, Austria,
Oct. 2017.

[8] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. In 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
91–104, Newport Beach, CA, Mar. 2011.

[9] H. Wen, W. Cai, M. Du, L. Jenkins, B. Valpey, and M. L. Scott. Mon-
tage: A general system for buffered durably linearizable data structures.
2020. arXiv preprint arXiv:2009.13701.

[10] Y. Zuriel, M. Friedman, G. Sheffi, N. Cohen, and E. Petrank. Efficient
lock-free durable sets. Proc. of the ACM on Programming Languages,
3(OOPSLA):128:1–128:26, Oct. 2019.

2


	Introduction
	Overview
	Experimental Results
	Conclusion

