
POSTER: Transactional Composition of Nonblocking
Data Structures

Wentao Cai
wcai6@cs.rochester.edu

Computer Science Department
University of Rochester
Rochester, NY, USA

Haosen Wen
hwen5@cs.rochester.com

Computer Science Department
University of Rochester
Rochester, NY, USA

Michael L. Scott
scott@cs.rochester.com

Computer Science Department
University of Rochester
Rochester, NY, USA

Abstract
We introduce nonblocking transaction composition (NBTC), a
new methodology for atomic composition of nonblocking
operations on concurrent data structures. Unlike previous
software transactional memory (STM) approaches, NBTC
leverages the linearizability of existing nonblocking struc-
tures, reducing the number of memory accesses that must
be executed together, atomically, to only one per operation
in most cases (these are typically the linearizing instructions
of the constituent operations).

Our obstruction-free implementation of NBTC, which we
call Medley, makes it easy to transform most nonblocking
data structures into transactional counterparts while preserv-
ing their nonblocking liveness and high concurrency. In our
experiments, Medley outperforms Lock-Free Transactional
Transform (LFTT), the fastest prior competing methodology,
by 40–170%. The marginal overhead of Medley’s transac-
tional composition, relative to separate operations performed
in succession, is roughly 2.2×.

For persistent memory, we observe that failure atomicity
for transactions can be achieved “almost for free” with epoch-
based periodic persistence. Toward that end, we integrate
Medley with nbMontage, a general system for periodically
persistent data structures. The resulting txMontage provides
ACID transactions and achieves throughput up to two orders
of magnitude higher than that of the OneFile persistent STM
system.

CCS Concepts: • Computing methodologies → Concur-
rent algorithms; • Theory of computation→ Parallel
computing models; • Hardware→ Non-volatile memory.

Keywords: nonblocking data structures, transactions, per-
sistent memory

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577503

1 Background
Many multi-threaded systems need to compose operations
into transactions that occur in an all-or-nothing fashion (i.e.,
atomically). One potential solution can be found in software
transactional memory (STM) systems, which instrument and
track every memory access, and convert almost arbitrary
sequential code into speculative transactions. Several STM
systems provide nonblocking progress [4, 7, 9, 10, 16].

The STM programming model is attractive, but its instru-
mentation typically imposes 3–10× overhead on transac-
tional operations [14, Sec. 9.2.3]. Spiegelman et al.’s lock-
based transactional data structure libraries (TDSL) [15] reduce
overhead by tailoring STM to specific data—e.g., reducing
read set size to only those on critical nodes whose updates
may indicate semantic conflicts.
In work concurrent to TDSL, Zhang et al. [18] proposed

the Lock-Free Transactional Transform (LFTT), a nonblocking
methodology to statically compose nonblocking operations,
based on the observation that only critical nodes matter
in conflict management. Subsequently, LaBorde et al.’s Dy-
namic Transactional Transform (DTT) [8] generalized LFTT
to dynamic transactions (specified as lambda expressions).

LFTT and DTT leverage the concurrency of existing non-
blocking data structures. Unfortunately, the need to identify
critical nodes tends to limit them to data structures repre-
senting sets and mappings. DTT’s publishing and helping
mechanisms also require that the “glue” code between op-
erations be fully reentrant (to admit concurrent execution
by helping threads [8]) and may result in redundant work
when conflicts arise. Worse, for read-heavy workloads, LFTT
and DTT require readers to be visible to writers, introducing
metadata updates that significantly increase contention in
the cache coherence protocol.

2 Our Contributions
We introduce NonBlocking Transaction Composition (NBTC),
a new methodology that can create transactional versions
of a wide variety of nonblocking data structures while pre-
serving nonblocking progress and incurring significantly
lower overhead than traditional STM. Specifically, NBTC

This work was supported in part by NSF grants CCF-1717712, CNS-1900803,
and CNS-1955498. Full version available on arXiv [2].

https://orcid.org/0000-0002-7929-2653
https://orcid.org/0000-0001-7118-1206
https://orcid.org/0000-0001-8652-7644
https://doi.org/10.1145/3572848.3577503


PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Wentao Cai, Haosen Wen, and Michael L. Scott

can compose any nonblocking data structures in which each
operation has an immediately identifiable linearization point,
namely:
1. statically, we can identify every instruction that may po-

tentially serve as the operation’s linearization point. Such
an instruction must be a load for a read-only operation or
a compare-and-swap (CAS) for an update operation;

2. dynamically, after executing a potentially linearizing in-
struction, we can determine whether it was indeed the
linearization point. A linearizing load has to be deter-
mined before the operation returns; a linearizing CAS
has to be determined without performing any additional
shared-memory accesses.
It is widely understood that most nonblocking opera-

tions comprise a “planning” phase and a “cleanup” phase [5,
17], separated by a linearizing instruction. Executing the
planning phase does not commit the operation to success;
cleanup, if needed, can be performed by any thread. The
intuition behind NBTC is that in already nonblocking struc-
tures, only critical memory accesses—for the most part, the
linearizing load and compare-and-swap (CAS) instructions—
need to occur atomically, while the planning can safely be
executed as the transaction encounters it, and the cleanup
can be postponed until after the transaction commits.
Our survey of existing data structures and composition

patterns reveals two principle complications with this intu-
ition. The first complication involves the notion of a publica-
tion point, where an operation may become visible to other
threads but not yet linearize. Because publication can alter
the behavior of other threads, it must remain speculative
until the entire transaction commits. An example can be seen
in the binary search tree of Natarajan and Mittal [11].

The second complication arises when a transaction, 𝑡 , per-
forms two or more operations and one of the later operations
(call it 𝑜2) observes the speculative CAS of an earlier opera-
tion (call it 𝑜1). Here the thread executing 𝑡 must proceed as
if 𝑜1 has completed. If 𝑜1 requires cleanup (something that
NBTC will normally delay until after transaction commit),
𝑜2 may need to speculatively help 𝑜1 before 𝑜2 can proceed.
Meanwhile, other transactions should not be aware of 𝑜1’s
existence.
Both complicating cases can be handled by introducing

the notion of a speculation interval in which CAS instructions
must be completed together for an operation to take effect
as part of a transaction. This is similar to the CAS executor
phase in a normalized nonblocking data structure [17], but
not the same, largely due to the second complication.
With critical instructions defined to be the CASes in a

speculation interval, plus the linearizing load for a read-
only operation, the NBTC methodology is as follows: To
atomically execute a set of operations on NBTC-composable
data structures, we transform every operation such that (1)
instructions prior to the speculation interval and non-critical

104

105

106106

0 10 20 30 40 50 60 70 80Threads

Th
ro

ug
hp

ut
 (t

xn
/s

)

Medley
txMontage

OneFile
POneFile

TDSL
LFTT

(a) get:insert:remove 0:1:1
0 10 20 30 40 50 60 70 80

Medley
txMontage

OneFile
POneFile

TDSL
LFTT

(b) get:insert:remove 18:1:1

Figure 1. Throughput of transactional skiplists (log 𝑌 axis).

instructions in the speculation interval are executed on the
fly as a transaction encounters them; (2) critical instructions
are executed in a speculative fashion, so they will take effect,
atomically, only on transaction commit; and (3) instructions
after the speculation interval are postponed until after the
commit.

To illustrate NBTC, we have written a system,Medley, that
(1) instruments critical instructions, executes them specu-
latively, and commits them atomically using M-compare-N-
swap, our variant of the multi-word CAS of Harris et al. [6];
(2) identifies and eagerly resolves transaction conflicts; and
(3) delays non-critical cleanup until transaction commit.

Figure 1 reports throughput on skiplist microbenchmarks
performed on a server with in total 80 hyperthreads. The
transient systems we measure (in solid lines) include our
Medley, the OneFile transient STM [13], TDSL [15], and
LFTT [18]. Medley outperforms OneFile and TDSL by an or-
der of magnitude, and LFTT by 40–170%. Given our invisible
readers, the gap between Medley and LFTT is larger when
the workload has a higher percentage of writes.

For persistent memory, we observe that failure atomicity
for transactions comes for free with epoch-based periodic
persistence [12]: if operations of the same transaction always
occur in the same epoch, then they will be recovered (or lost)
together in the wake of a crash. Building on this observa-
tion, we merge Medley with nbMontage [1], our epoch-based
system for nonblocking periodic persistence, to create tx-
Montage. All operations in a given transaction are labeled
with the same epoch number, which is then validated along
with the rest of the read set at commit time, ensuring that
the transaction commits in this epoch.
The persistent systems in Figure 1 (dotted lines) repre-

sent our txMontage and the OneFile persistent STM (POne-
File) [13]. While txMontage on Intel Optane non-volatile
memory performs closely toMedley onDRAM, the persistent
OneFile is roughly 10× slower than its transient version—in
turn two orders of magnitude slower than txMontage.
We have transformed a variety of data structures using

Medley and txMontage, and conducted experiments running
the TPC-C [3] transaction processing benchmark on Medley,
txMontage, and other compatible competitors. The results
(reported in the full version on arXiv [2]) reconfirm the
exceptional performance of our systems.



POSTER: Transactional Composition of Nonblocking Data Structures PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

References
[1] Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du,

Rafaello Sanna, Shreif Abdallah, and Michael L. Scott. 2021. Fast Non-
blocking Persistence for Concurrent Data Structures. In 35th Intl. Symp.
on Distributed Computing (DISC). Freiburg, Germany, 14:1–14:20.

[2] Wentao Cai, Haosen Wen, and Michael L. Scott. 2023. Transactional
Composition of Nonblocking Data Structures. arXiv preprint
arXiv:2301.00996.

[3] The Transaction Processing Council. 2010. TPC-C Benchmark (Revi-
sion 5.11.0). http://www.tpc.org/tpcc/.

[4] Keir Fraser. 2003. Practical Lock-Freedom. Ph. D. Dissertation. King’s
College, Univ. of Cambridge. Published as Univ. of Cambridge Com-
puter Laboratory technical report #579, February 2004. www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-579.pdf.

[5] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,
and Erez Petrank. 2020. NVTraverse: In NVRAM Data Structures, the
Destination is More Important than the Journey. In 41st ACM Conf.
on Programming Language Design and Implementation (PLDI). virtual
conference, 377–392.

[6] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-
word Compare-and-Swap Operation. In 16th Intl. Symp. on Distributed
Computing (DISC). Toulouse, France, 265–279.

[7] Maurice Herlihy, Victor Luchangco, MarkMoir, andWilliamN. Scherer
III. 2003. Software Transactional Memory for Dynamic-sized Data
Structures. In 22nd ACM Symp. on Principles of Distributed Computing
(PODC). Boston, MA, 92–101.

[8] Pierre LaBorde, Lance Lebanoff, Christina Peterson, Deli Zhang, and
Damian Dechev. 2019. Wait-Free Dynamic Transactions for Linked
Data Structures. In 10th Intl. Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM). Washington, DC,
41–50.

[9] Virendra Jayant Marathe and Mark Moir. 2008. Toward High Perfor-
mance Nonblocking Software Transactional Memory. In 13th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming

(PPoPP). Salt Lake City, UT, 227–236.
[10] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul

Acharya, David Eisenstat, William N. Scherer III, and Michael L. Scott.
2006. Lowering the Overhead of Software Transactional Memory. In
1st ACM SIGPLANWorkshop on Transactional Computing (TRANSACT).
Ottawa, ON, Canada, 11 pages.

[11] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-free
Binary Search Trees. In 19th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPoPP). Orlando, FL, 317–328.

[12] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically
Persistent Hash Map. In 31st Intl. Symp. on Distributed Computing
(DISC). Vienna, Austria, 37:1–37:16.

[13] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Co-
hen. 2019. OneFile: A Wait-Free Persistent Transactional Memory. In
49th IEEE/IFIP Intl. Conf. on Dependable Systems and Networks (DSN).
Portland, OR, 151–163.

[14] Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan &
Claypool Publishers, San Rafael, CA.

[15] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-
actional Data Structure Libraries. In 37th ACM Conf. on Programming
Language Design and Implementation (PLDI). Santa Barbara, CA, 682–
696.

[16] Fuad Tabba, Mark Moir, James R. Goodman, Andrew W. Hay, and
Cong Wang. 2009. NZTM: Nonblocking Zero-indirection Transac-
tional Memory. In 21st ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA). Calgary, AB, Canada, 204–213.

[17] Shahar Timnat and Erez Petrank. 2014. A Practical Wait-Free Simula-
tion for Lock-Free Data Structures. In 19th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming (PPoPP). Orlando, FL,
357–368.

[18] Deli Zhang and Damian Dechev. 2016. Lock-Free Transactions without
Rollbacks for Linked Data Structures. In 28th ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA). Pacific Grove, CA, 325–336.

http://www.tpc.org/tpcc/
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

	Abstract
	1 Background
	2 Our Contributions
	References

