
Buffered Persistence in B+ Trees (Abstract)∗

Mingzhe Du, Michael L. Scott
{mdu5,scott}@cs.rochester.edu

Department of Computer Science, University of Rochester
Rochester, NY, USA

Abstract
Existing concurrent B+ trees for Non-Volatile Memory (NVM) per-
sist every update immediately, incurring high persistence overhead
and excessive NVM writes, even though such strict durability is
often unnecessary. B+ trees are commonly used to index disk- and
flash-based databases, where updates are typically buffered and per-
sistence occurs on a millisecond timescale. We propose BD+Tree,
a Buffered Durable B+ tree that defers and batches NVM writes.
BD+Tree improves performance and reduces NVM wear-out by
lowering persistence overhead and improving cache efficiency.

1 Introduction
Concurrent B+ trees are among the most widely used database in-
dexing structures and have been extensively optimized. The advent
of Non-Volatile Memory (NVM), with latency and bandwidth only
a small constant factor worse than that of DRAM but with higher
capacity and lower cost per byte, offers the intriguing opportu-
nity to build persistent structures with both high performance in
the absence of crashes and low post-crash recovery time. Existing
B+ trees for NVM follow a strict correctness criterion—Durable
Linearizability (DL)—which requires that (1) operations appear to
occur in some total order consistent with sequential semantics and
(2) each operation appear to take place and to persist at some single
point in time between its call and return [1, 3].

AchievingDL requires immediately persisting each critical change
using cache line write-back instructions—typically a flush followed
by a fence. These instructions can require scores or even hun-
dreds cycles to complete. Additionally, some flush instructions (e.g.,
clflush, clflushopt, and even clwb on certain Intel machines) in-
validate cache lines, requiring subsequent accesses to miss in the
last-level cache. Moreover, repeated flushes to the same cache line
contribute to wear-out in NVM with limited endurance.

Our work is founded on two key observations. First, cache reuse
plays a critical role in persistent applications, enhancing perfor-
mance through latency hiding and reducing wear-out through in-
cache write combining. Second, disk- and flash-based databases
have relied on buffered persistence for decades, making DL an un-
necessarily strong correctness criterion for a B+ tree serving as an
index. What matters in post-crash recovery is consistency between
∗Full paper published in Proceedings of the ACM on Management of Data 2:6 (Dec. 2024),
and presented at the SIGMOD/PODS International Conference on Management of
Data, Berlin, Germany, June 2025.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HOPC ’25, Portland, OR, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2039-0/2025/07
https://doi.org/10.1145/3746238.3746245

Figure 1: BD+Tree structure with 512B nodes (left), metadata
structure (top right), and a bitmap example (bottom right).

the tree and the database; loss of the last few updates is appropriate
if the corresponding transactions have been lost from the buffer
cache (sync operations should of course persist both).

We present a persistent B+ Tree (BD+Tree) that implements
Buffered Durable Linearizability (BDL) [3]. This correctness crite-
rion ensures that (1) all operations appear to occur in some total
order consistent with sequential semantics, (2) each operation (in
the absence of crashes) appears to take place at some single point
in time between its call and return, and (3) post-crash recovery
restores a consistent prefix of this pre-crash execution history. The
implementation amortizes persistence overhead over large oper-
ation batches, optimizes cache reuse, and reduces NVM writes
through in-cache write-combining.

2 BD+Tree Design
BD+Tree achieves BDL by implementing an epoch system and a
specialized leaf node design. The epoch system serves two key
functions: it (1) maintains a global clock that ticks every few mil-
liseconds, segmenting execution into distinct epochs; (2) tracks and
persists writes to NVM at epoch boundaries. Managed by a back-
ground thread, the epoch system ensures that maintenance and
persistence overhead are off the critical path. At any given point in
normal (crash-free) execution, epochs can be categorized as
• the active epoch 𝑒 , in which new operations start. Operations in
this epoch will not survive a crash that occurs before epoch 𝑒 + 2.

• the in-flight epoch 𝑒 − 1, in which threads can continue their
ongoing operations but are prohibited from starting new ones.
Operations in this epoch will not survive a crash that occurs
before (𝑒 − 1) + 2 = 𝑒 + 1.

• valid epochs 𝑖 , for 𝑖 ≤ 𝑒−2. Threads are not allowed to execute or
initiate new operations in these epochs. Content in valid epochs
has been securely persisted.
BD+Tree operations–including insertion, deletion, lookup, and

range query–are designed to be fully contained with boundaries

https://doi.org/10.1145/3746238.3746245


HOPC ’25, July 28-August 1, 2025, Portland, OR, USA Mingzhe Du, Michael L. Scott

1 4 8 16 24 32 40 48 52
100

101

102

t1 (zipfian, r:w=50:50)

Th
ro
ug

hp
ut
(M

O
ps
/S
ec
)

1 4 8 16 24 32 40 48 52
100

101

t2 (uniform, r:w=50:50)

Fast&Fair LB+-Tree MontageTree BD+Tree

Figure 2: Throughput of persistent B+ trees (x-axis indicates
the number of threads; y-axis scale is logarithmic).

of a single epoch, ensuring no operation spans across multiple
epochs. Writers coordinate with the epoch system to track and
persist updates, while readers, which do not alter the tree, execute
independently. Before progressing to the next epoch, the epoch
system ensures that all in-flight operations are complete and up-
dates are persisted. Waiting for in-flight operations to complete
does not cause global quiescence, as new operations can begin in
the active epoch. Once all in-flight data have been written back to
NVM, the epoch system issues a fence and increments the epoch
number. At this point the formerly active epoch becomes in-flight,
and the in-flight epoch becomes valid. In the event of a crash, only
operations from valid epochs are recovered.

To preserve BDL, updates from newer epochs must be applied
to separate copies of data created in earlier epochs, ensuring the
execution history remains intact and recoverable. In-place updates
are permitted only for data created within the same epoch. BD+Tree
employs a specialized design to track the execution epoch of each
operation. As illustrated in Fig. 1, BD+Tree stores inner nodes in
DRAM (recoverable from leaf nodes), and leaf nodes in NVM. Inner
nodes retain the standard B+ tree structure, whereas leaf nodes
adopt a specialized design: the first cache line stores metadata,
and the remaining cache lines comprise key-value (KV) pairs. The
metadata includes two key components to support BDL:
• EpochBitmap is a composite field comprising an epoch number
and two bitmaps. The epoch number indicates when the node
was last updated. If its value is 𝑒 , the two bitmaps bitmap𝑒−1 and
bitmap𝑒−2 indicate which KV pairs were visible in and before
epoch 𝑒 − 1, respectively.

• bitmape is a bit array that identifies KV pairs that are visible in
epoch 𝑒 , where 𝑒 is the epoch number stored in 𝐸𝑝𝑜𝑐ℎ𝐵𝑖𝑡𝑚𝑎𝑝 . A
KV pair is considered inserted/deleted into the node when the
associated bit is set/cleared.
Each KV pair may have up to three copies, corresponding to

three epochs. Only the most recent copy is visible, as determined
by bitmaps. The global epoch number, node epoch number, and
three bitmaps together determine the state of a leaf node. Con-
sider the example shown in the bottom right of Fig. 1. If the global
epoch number is 5, the same as the node epoch number stored
in EpochBitmap, and bitmap𝑒 = ⟨1, 1, . . . , 0, 0⟩, then there are KV
pairs in slots 0 and 1. Similarly, bitmap𝑒−1 = ⟨1, 0, . . . , 0, 0⟩, indi-
cates that there was one KV pair, in slot 0, during epoch 4, and
bitmap𝑒−2 = ⟨0, 0, . . . , 0, 1⟩, indicates that there was one KV pair, in

t1 t2

0

10

20

30

writes

N
VM

tr
affi

c
(M

iB
)

t1 t2

0

50

reads

LB+Tree
Montage-B+Tree
BD+Tree

Figure 3: NVM traffic generated per million operations
(in MiB). Experiments were conducted with 24 threads.
Fast&Fair is excluded because of its fully persistence.

the last slot, two epochs ago. Together, the three bitmaps imply the
execution history: a KV pair was inserted into slot 𝑛 − 1 in epoch 3
or earlier; in epoch 4, the KV pair in the last slot was removed, and a
new KV pair was inserted into slot 0 (it may be a copy of the KV pair
in slot 𝑛 − 1, clearing the last bit in bitmap𝑒−1 ensures that only the
new copy is visible); in epoch 5, a KV pair was inserted into slot 1.
Upon a crash in epoch 5, the node would be restored to its state
two epochs ago, with only the KV pair in slot 𝑛 − 1 remaining. KV
pairs in slots 0 and 1 would be discarded. If instead the node epoch
number were 4, indicating the last update to the node occurred one
epoch ago, bitmap𝑒 and bitmap𝑒−1 would identify visible KV pairs
from epochs 3 and 2, respectively. Only the KV pair in slot 0 should
be recovered after a crash. Similarly, if the epoch number were 3,
the recovery procedure would restore KV pairs in the first two slots,
as indicated by bitmap𝑒 .

3 Evaluation
We benchmarked BD+Tree against three persistent B+ trees: Fast &
Fair (fully persisted, DL) [2], LB+Tree (hybrid, DL) [4], andMontage-
B+Tree (hybrid, BDL) [5], using Memcached traces with varying
workload characteristics. Fast & Fair and LB+Tree incur high persis-
tence overhead and excessive NVM traffic due to strict persistence.
Montage-B+Tree reduces these at a substantial memory cost, con-
suming 10× more DRAM than BD+Tree by keeping the bulk of the
tree in DRAM,with only KV pairs in NVM. As shown in Fig. 2, under
a high-locality scenario (t1), BD+Tree achieves a 1.5–2.4× speedup,
by minimizing persistence overhead and maximizing cache effi-
ciency. It also reduces NVM traffic by up to 99% through in-cache
write combining (Fig. 3). Even under a challenging, uniformly dis-
tributed workload with a large working set (t2), which negates
cache reuse benefits, BD+Tree remains highly competitive.

In the event of a crash, LB+Tree and BD+Tree need only a
fast traverssal of the leaf layer in NVM to rebuild the inner tree.
Montage-B+Tree, however, must scan the NVM heap to collect valid
KV pairs—a significantly more costly process. BD+Tree counteracts
the space overhead of maintaining KV duplicates with effective
in-place updates and memory recycling, for a negligible increase in
NVM usage. The advantage of BD+Tree becomes more pronounced
as cache sizes grow, aligning well with trend in CPU design. Please
see the full paper for details.



Buffered Persistence in B+ Trees (Abstract) HOPC ’25, July 28-August 1, 2025, Portland, OR, USA

References
[1] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018.

A Persistent Lock-Free Queue for Non-Volatile Memory. In 23rd ACM Symp. on
Principles and Practice of Parallel Programming. 28–40.

[2] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In 16th
USENIX Conf. on File and Storage Technologies. 187–200.

[3] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016. Linearizability
of Persistent Memory Objects Under A Full-system-crash Failure Model. In 30th
Intl. Symp. on Distributed Computing. Springer, 313–327.

[4] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+ Trees: Optimizing Persistent
Index Performance on 3DXPoint Memory. Proceedings of the VLDB Endowment
13, 7 (2020), 1078–1090.

[5] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and
Michael L. Scott. 2021. A fast, General System for Buffered Persistent Data Struc-
tures. In 50th Intl. Conf. on Parallel Processing. 1–11.


	Abstract
	1 Introduction
	2 BD+Tree Design
	3 Evaluation
	References

