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Abstract
Hardware Transactional Memory (HTM) simplifies concurrent pro-
gramming and can accelerate multithreaded execution through lock
elision. Non-Volatile Memory (NVM) combines the speed and byte
addressability of DRAM with the durability of storage, enabling
the construction of high-performance, persistent data structures.
Unfortunately, the write-back instructions typically needed to en-
sure post-crash consistency in NVM cause HTM transactions to
abort, precluding the straightforward combination of HTM and
persistent data structures. The problem goes away on machines
with persistent caches, but these require special battery-backed
circuitry and are far from commonplace.

To combine HTM and persistent data structures, we advocate for
buffered durable linearizability (BDL), a relaxed correctness criterion
that enables recovery to a “recent” consistent state in the wake of a
crash, allowing writes-back to occur outside transactions.

Significantly, BDL retains the persistence guarantees of storage
systems—such as databases backed by disks or flash—that have
relied on buffering for decades.

The combination of HTM and buffered durability enables three
separate usage scenarios. First, we add durability to an existing
HTM-based structure (a van Emde Boas tree due to Khalaji et al.);
second, we use HTM to simplify an existing persistent structure (a
skiplist due to Wang et al.); third, we “back port” an HTM-based
structure optimized for persistent caches (a hash table due to Zhang
et al.) to work well on more conventional processors. The first two
scenarios yield several-fold improvements in throughput; the third
sees very little slowdown.

CCS Concepts
• Theory of computation → Concurrent algorithms; Data
structures and algorithms for data management; • Software and
its engineering→ Concurrency control; • Hardware→ Non-
volatile memory; • Computer systems organization→ Proces-
sors and memory architectures.
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1 Introduction
Implementing correct, high-performance multithreaded code can
be both challenging and error-prone. For many concurrent struc-
tures, Hardware Transactional Memory (HTM) is a powerful tool,
enabling concurrent execution of disjoint operations without fine-
grain locking or subtle nonblocking protocols. Commodity HTM
implementations, such as Intel’s Transactional Synchronization
Extensions (TSX), provide instructions to bracket code regions that
should execute atomically. The implementation of these instruc-
tions relies on the cache coherence protocol to track and manage
speculatively read and written lines. Changes are made globally
visible only upon a successful commit—in particular, in the absence
of conflicting concurrent activity—ensuring that all accesses of a
given transaction appear to happen atomically. If a conflict arises
(detected via cache eviction), the transaction is aborted. When this
occurs, the processor rolls back any speculative changes, restoring
the system to its prior state without affecting other cores. Despite
the fact that current (“best-effort”) hardware has limited transaction
size and is subject to spurious aborts, HTM remains a powerful tool
for fine-grained concurrency control due to its easy-to-use interface
and minimal overhead compared to traditional locking mechanisms
[6, 41, 44, 47, 49, 64]. Unfortunately, existing uses of HTM do not
transfer in any straightforward way to persistent structures.

Non-volatile memory (NVM) offers DRAM-like performance
with the durability of storage, allowing persistent data structures
to be retained across system crashes. Unlike their transient coun-
terparts, however, persistent structures require additional program-
ming effort to ensure crash consistency. Two problems account
for this extra effort. First, operations that have only partially com-
pleted when a crash occurs must be rolled forward or backward
during recovery. This problem can be addressed with logging or
nonblocking algorithms. Second, CPU caches remain volatile on
most machines, and cache lines are written back to memory in an
unpredictable order determined by the cache replacement policy.
As a result, data may reach NVM out of order from the program’s
perspective, potentially leading to inconsistent state after a crash.
To address this problem, programmers use explicit write-back (e.g.,
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clflush, clflushopt, and clwb on x86) and fence instructions to en-
sure that data reach NVM in the correct order. Without these extra
“persist” instructions, critical data could remain dirty in cache and
be lost in the event of a crash, resulting in data corruption.

While Intel has disabled TSX by default in recent products (due
to side-channel security concerns), IBM’s mainframe (z-series) ma-
chines continue to leverage HTM for concurrency control, and
ARM has recently integrated HTM support into their instruction
set. Likewise, while Intel’s Optane persistent memory was can-
celed in 2022, manufacturers are pursuing future products, and
the widespread adoption of CXL [13] seems likely to allow even
disaggregated DRAM to appear nonvolatile from the host’s per-
spective. These trends suggest a future in which both HTM and
NVM continue to play important roles.

Naively, one might hope that HTM could be used to achieve
not only isolation among concurrent operations but also post-
crash atomicity and consistency: simply enclose each operation—
including its write-back instructions—in a hardware transaction.
Unfortunately, write-back instructions are incompatible with HTM
because they violate isolation: while HTM requires memory opera-
tions to be speculatively executed and invisible to other cores until
a transaction commits, writes-back force data to be written to NVM,
making them globally visible prematurely. As a result, developers
generally use locks to synchronize concurrent NVM writes, leading
to tradeoffs between programming complexity (lock granularity)
and performance [29, 32, 35, 51, 52]. Designing lock-free persis-
tent data structures is even more challenging and error-prone: in
addition to managing concurrency, programmers must carefully
insert persist operations before reads and after writes to ensure that
updates are both atomic and durable [25]. Beyond the added com-
plexity, excessive use of persist instructions introduces significant
performance overhead and contributes to NVMwear-out [2, 12, 54].

Persistent cache, marketed by Intel as eADR and available on
third generation Xeon processors, resolves the incompatibility be-
tween NVM and HTM, at least in part. With CPU caches included
in the persistence domain, explicit persist operations are no longer
needed to ensure the durability of data stored in the cache. Data
structures designed for volatile memory (even those synchronized
with HTM) and those designed for nonvolatile memory (with per-
sist instructions removed) can be backed by NVM on an eADR
machine and will remain consistent after a crash, though logging
may still be required for roll-forward or roll-back of operations that
use locks (either by default or when HTM fails).

Even with eADR, however, transient data structures originally
designed for DRAM may experience suboptimal performance on
NVM.With Intel Optanememory, for example, the physical medium
is accessed at multi-cache-line granularity (256 bytes in the first
generation of hardware, 128 bytes in the second). Moreover, NVM
writes have one third the bandwidth and three times the latency
of reads [4, 22]. As a result, transient data structures running on
NVM may suffer from write amplification, unnecessary wear-out,
and significant performance degradation.

Recent work suggests that data structures should be custom
designed for persistent cache and NVM, together, in order to maxi-
mize performance [62, 63, 65, 66]. Some of this work makes use of
HTM [62, 63]. Much of it can be seen as a step toward full-system

persistence and crash recovery [26, 27, 60]. Given the cost and com-
plexity of the battery backup required for eADR, however, most
systems seem likely to come with volatile caches for the foreseeable
future. To integrate HTM with NVM on “plain ADR” machines,
designers have developed methods to avoid persist instructions
within transactions [10, 14, 20, 33, 40, 42, 57, 59]. Oukid et al. [42],
for example, keep interior tree nodes in DRAM, where they are
updated using HTM; leaf nodes, in NVM, are synchronized with
locks. David et al. [14] describe a link cache, synchronized with
HTM, that heuristically delays the write-back of updated pointers.
Liu et al. [33] use HTM for tree traversal but also for atomic leaf
update: writers synchronize among themselves by holding a spin
lock during updates and write-back; they use a hardware transac-
tion inside the spin lock critical section to synchronize with readers,
which do not acquire the lock. Genç et al. [20] use two HTM trans-
actions to commit a single operation: the first transaction gathers
all NVM writes in a redo log that is persisted after the transaction
commits. A second transaction then performs the actual program
writes in NVM. Other researchers have suggested special hardware
for persistent logging [1, 7, 38].

The incompatibility between HTM and NVM programming
arises from the write-back instructions used to achieve strict dura-
bility—to persist each critical update immediately. We argue, how-
ever, that such strictness is unnecessary for many data structures—
notably the trees, skiplists, and hash tables that serve as indexes
in storage systems. These systems have, for decades, successfully
relied on buffering within the operating system, typically on a mil-
lisecond timescale. By aligning the persistence model of an index
with its underlying storage—i.e., by extending buffered persistence
to byte-addressable data structures—we can arrange for writes-back
to be delayed until after the completion of each HTM transaction,
resolving the conflict of NVM and HTM without compromising
overall persistence guarantees, as long as the indexing structure
remains consistent with the storage system.

Rather than persist each operation before returning to the caller,
a buffered durably linearizable (BDL) [25, 37] data structure performs
persistence in the background and arranges, in the wake of a crash,
to recover to a bounded-ly recent consistent state. Typically, the
history of a persistent data structure is divided into epochs of a
few milliseconds each. NVM writes are buffered within an epoch,
and a crash in epoch 𝑒 recovers to the state of the structure at
the end of epoch 𝑒 − 2. By delaying persist operations, buffered
durability removes HTM-conflicting persistence from transactions,
allowing persistent data structures to run safely with commodity
HTM without requiring hardware changes or software logging.
Buffered durability also allows the system to continue executing
new epochs while persisting data from earlier epochs, avoiding
execution pauses. Unlike checkpointing or snapshots, BDL does
not require that all data fit in DRAM, or that they be copied in their
entirety in the course of periodic backups.

The combination of buffered durability and hardware transac-
tions offers benefits in at least three key scenarios. First, transient
structures that use HTM for scalability and performance can be
made persistent with buffered durability. Second, persistent struc-
tures that rely on complex locking and logging protocols can be
simplified (and often made faster) using HTM and buffering. Third,
persistent structures that use HTM on eADR machines can be “back
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ported” to plain ADR while retaining optimizations for NVM block
size, latency, bandwidth, and write endurance.

Summarizing contributions, we:

• add buffered durability to the HTM-based van Emde Boas
tree of Khalaji et al. [28], achieving throughput up to 4×
higher than in state-of-the-art persistent trees.

• add buffered durability and HTM to the persistent skiplist
of Wang et al. [54], achieving throughput up to 3× higher
than that of the original nonblocking version while retaining
most of its preemption tolerance.

• adapt the HTM-based hash table of Zhang et al. [62], which
was optimized for persistent caches, to run on more con-
ventional processors, preserving its optimizations, its use of
HTM, and most of its performance.

• provide guidelines, including optimization opportunities and
pitfalls, for combining HTM with buffered durability.

Source code for our example data structures is available at https:
//github.com/urcs-sync/BD-HTM.git.

2 Background
2.1 Persistent Programming Model
Linearizability [23] is the standard safety criterion for concurrent
data structures. It requires (1) that every sequence of (potentially
overlapping) operations have the same effect (same arguments and
return values) as some sequential (nonoverlapping) history that
respects the semantics of the structure and (2) that if operation
𝐴 returns before operation 𝐵 is called, then 𝐴 appears to happen
before 𝐵. Equivalently, one must be able to identify an instruction
(the linearization point) in every operation at which the operation
appears to take effect.

Durable linearizability (DL) [19, 25] extends the notion of
linearizability to accommodate “full system” crashes, in which all
threads stop running and any future operations employ a new set of
threads. Equivalently, it must be possible to identify an instruction
(the persist point) in every operation after which its effects will
survive a crash. In any execution, linearization points and persist
points must occur in the same order.

Buffered durable linearizability (BDL) [25] relaxes persis-
tence requirements with a weaker consistency guarantee. A data
structure is said to be buffered durably linearizable if (1) it is lin-
earizable during crash-free execution, and (2) upon a crash, the data
structure preserves a consistent prefix of the linearization order
of the previous inter-crash interval. Compared to DL, BDL allows
operations to be batched and persisted together, thereby amortizing
persistence overhead. Previous work [3, 37, 55] shows that BDL
can greatly improve performance and reduce NVM writes.

2.2 Hardware Transactional Memory
A sequential data structure can easily be made thread safe by adding
a coarse-grain lock, but performance is likely to be terrible. Fine-
grain locks may enable concurrent access, but their integration
into nontrivial structures is typically both labor intensive and error
prone. Faced with this tradeoff, programmers often make compro-
mises. Search trees, for example, may give up on dynamic rebal-
ancing, abandoning the guarantee of log-time operations [5, 16]. In

a similar vein, Kułakowski’s parallelization of the van Emde Boas
(vEB) search tree, whose sequential version is doubly logarithmic,
fails to maintain this time complexity and (in the original published
version) admits extreme cases in which a successor operation re-
turns a failure indication instead of an actual result [30, 31].

Transactional memory (TM) aims to combine the simplicity of
coarse-grain locks with the concurrency of fine-grain locks. It offers
a simple programming model—label the blocks of code that need
to be atomic—on top of a speculative implementation—assume
that concurrent atomic sections are mutually independent, execute
them in parallel, and back out and retry in the event of conflict.
Researchers have used HTM to create fully featured versions of
many concurrent structures, including binary [47] and vEB [28]
trees.

Current hardware TM, as offered by Intel, IBM, and Arm, is
said to offer “best effort” behavior: its transactions may abort not
only due to conflict with other transactions but for a variety of
additional reasons. On Intel platforms, speculative writes are limited
to the size of the L1 cache, and reads to that plus a Bloom-filter
summary of evicted lines [9]. Transactions that exceed these limits
may abort deterministically. They may also abort in response to
various transient events, including page faults, timer expiration,
I/O interrupts, or L1 associativity misses. Finally, they will abort if
they attempt to execute various unsupported instructions—notably
including the clflush, clflushopt, and clwb instructions used to flush
or write lines back to NVM. Given the possibility of repeated (even
indefinitely repeated) aborts, best-effort HTM must be combined
with a “fallback path” in software that guarantees forward progress,
typically using a global lock.

To minimize the size and duration of transactions, some re-
searchers have used HTM to build atomic primitives that can serve
as building blocks for more complex operations on lock-free con-
current structures. Makreshanski et al. [49] use HTM to implement
a Multi-word Compare-and-Swap (MwCAS) that can update ar-
bitrary memory locations atomically. Brown et al. [6] provide a
similar HTM version of Load-Link/Store-Conditional (LL/SC): their
primitive snapshots multiple locations and then atomically updates
one of them if none has been modified by a writer in between.

2.3 Persistent Data Structures and Concurrency
Control

Persistent data structures can be created automatically from non-
blocking transient versions by inserting persist instructions at ap-
propriate points in the code [25], but this approach does not lead to
good performance. Much research focuses on developing new de-
signs that minimize overhead and accommodate the idiosyncrasies
(block size, latency, bandwidth, wear-out) of NVM. Any such design
must address two key correctness challenges. First, persistent data
structures must carefully manage the order of persistence to avoid
inconsistency after crashes. A newly inserted list node, for example,
must be persisted before creating a pointer to it. Otherwise, the
pointer could be written back to memory first, leaving it referenc-
ing garbage in the event of an intervening crash. Second, there is
typically a discrepancy between the point of visibility (PoV) and the
point of persistence (PoP) for a given write—these occur at different
instructions. A write that has become visible to other threads can
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be lost if its line remains dirty in a volatile cache at the time of a
crash, leading to post-crash inconsistencies if a dependent write in
another thread has made its way to NVM first.

Table 1 summarizes the concurrency control in various persis-
tent dictionary data structures from the literature. Many of these
use locks to delay the PoV until after data has safely persisted.
(This typically requires a post-crash recovery routine to clean up
held locks and partially completed operations.) For nonblocking
structures whose operations linearize with atomic primitives like
CAS, there is a risk that a store will become visible to other threads
before it has persisted, leading to a dirty read anomaly [63]. Pro-
grammers typically handle this by persisting critical NVM reads
in addition to writes [18, 25]. To simplify the design and imple-
mentation of persistent lock-free structures, Pavlovic et al. [45]
and Wang et al. [54] have developed multi-word CAS (PMwCAS)
operations that are both atomic and persistent. PMwCAS begins
by initializing a descriptor, which stores the operation status and
the addresses, old values, and new values of the target words. It
then announces its intent by installing pointers to the descriptor
in all of the target words, in canonical order. Finally, after using a
single CAS to change the status of the descriptor from pending to
committed, it replaces the pointers with updated values. If a conflict
arises during the installation process (i.e., if a target address already
holds a pointer to another descriptor), the thread helps complete the
conflicting PMwCAS before proceeding (or retrying). Throughout
this process, persist instructions ensure that descriptor changes are
durably written to NVM, allowing a PMwCAS that is interrupted
by a crash to either roll back or complete.

Persist operations are crucial for maintaining crash consistency.
Unfortunately, given the latency of NVM, they can lengthen the
critical path of operations by up to an order of magnitude [61].
They can also result in excessive NVM writes, exacerbating wear-
out and stressing bandwidth limitations. Despite efforts to reduce
persist instructions, they remain heavily used in state-of-the-art
structures—especially lock-free structures that need to avoid dirty
read anomalies. CCEH [36], a lock-based hash table, uses at least
3 persist instructions per insert. BzTree [2], a lock-free persistent
B-tree built with PMwCAS, requires 11 persist instructions per
insert.

Persistent cache (e.g., Intel eADR) eliminates the PoV–PoP dis-
crepancy and the need for persist operations. It allows persistent
data structures to use HTM for finer-grained concurrency control.
This can be particularly helpful for structures with fat nodes (hash

Table 1: Concurrency control in persistent mappings.

Type Data structure

Lock
Hash-based Level hashing [68], Plush [51],

CCEH [36], DASH [34]
Tree-based LB+Tree [32], FPTree [42],

NVTree [58], DPTree [67]
Trie-based ROART [35], PACTree [29], ERT [53]

Lock-free
Hash-based Clevel [12], SOFT [69]
Tree-based BzTree [2], 𝜇Tree [11], Fast&Fair [24],

NBTree [63]
Trie-based Heart [39]

HTM Hash-based Spash [62]

table buckets, tree leaves), in which multiple threads can access
the same node safely as long as they operate on different entries
[62, 63]. In lock-free data structures, eliminating the need for persist
instructions significantly reduces overhead, improving scalability
and performance. It also enables designs that choose when to write
back data. Hot data can be kept in the cache to maximize hits
and minimize NVM traffic. Small, cold writes can be buffered and
combined into larger blocks in the cache, again to minimize traffic.

3 Combining HTM and Buffered Durability
We advocate using buffered durability to reconcile the incompat-
ibility between HTM and NVM programming without requiring
hardware modifications. HTM provides simple, low-overhead con-
currency control (isolation and consistency); buffering allows persis-
tence (atomicity and durability) to be added without compromising
concurrency control. The remainder of this section describes the
epoch system that transforms data structures into their buffered
durable versions. The following section presents three case studies
that leverage this epoch system.

Our epoch system builds on mechanisms implemented in Mon-
tage [55], with extensions to accommodate HTM and to improve
performance. A background thread increments the value of a global
clock every few milliseconds, dividing execution into epochs. At
any given point in normal (crash-free) operation, these epochs can
be categorized as

• the active epoch 𝑒 , in which new operations start. Operations
in this epochwill not survive a crash that occurs before epoch
𝑒 + 2.

• the in-flight epoch 𝑒 − 1, in which operations that have
already begun can continue to execute, but in which new
operationswill no longer be created. Operations in this epoch
will not survive a crash that occurs before (𝑒 − 1) + 2 = 𝑒 + 1.

• valid epochs 𝑖 , for 𝑖 ≤ 𝑒 − 2. All operations in these epochs
have completed and successfully persisted.

The epoch system API exposes methods to guarantee that each
operation will occur within a single epoch, and that data will be
properly buffered for delayed persistence. API methods are listed
in Table 2.

Table 2: Epoch system API.

API Description
beginOp( ) Register the calling thread as active in the current

epoch, and begin to track its NVM writes.
endOp( ) Schedule tracked writes for persistence and

disassociate the calling thread from any epoch.
abortOp( ) Disassociate the calling thread from any epoch

and discard its tracked writes.
pNew( ) Allocate a memory block from NVM.
pSet( ) Update a memory block.

pRetire( ) Track a memory block for future reclamation.
pDelete( ) Reclaim a memory block and return it to the

NVM allocator.
pTrack( ) Track a memory block in the current epoch.

b->getEpoch( ) Return epoch in which memory block b was
tracked.

b->setEpoch( ) Set epoch of memory block b.
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Epochs eliminate the quiescence issue present in snapshot and
checkpointing systems, where all worker threads must be paused
(or copy-on-write enabled) when synchronizing data to persistent
storage. The epoch system advances from epoch 𝑒 to 𝑒 + 1 only
after all updates from epoch 𝑒 − 2 have safely persisted. While
waiting for this advance, worker threads can continue their work
in the in-flight epoch 𝑒 − 1 or initiate new operations in epoch 𝑒 .
Internally, the epoch system maintains per-epoch announcement
arrays and per-thread buffers to track operations and writes from
worker threads.

Each thread brackets operations with beginOp() and endOp().
Each operation is confined to a single epoch. The code for beginOp()
updates the caller’s slot in the announcement array to signal that
it has started a new operation in the current epoch. The code for
endOp() clears this slot, informing the epoch system that tracking
for this thread can stop. In between, threads use pNew() for NVM
allocation and pSet() for NVM writes. NVM writes generated in
a given epoch are tracked in the per-thread buffers and persisted
together during crash-free execution—or discarded entirely in the
event of a crash. More detail can be found in the original Montage
paper [55].

Unfortunately, Montage is not HTM-compatible. To update a
block in a BDL manner, Montage checks the epoch in which the
block was last modified and, if this is not the operation’s epoch,
allocates a new NVM block and buffers the original block for recla-
mation in a future epoch. This out-of-place update ensures that
operations interrupted by a crash do not corrupt the original data,
allowing the system to recover to a consistent state. Because it re-
quires persistence instructions, however, the pNew()method aborts
any active HTM transaction. The pDelete() method, which re-
claims NVM blocks, causes similar aborts. To support HTM, we
introduced new API calls and modified the persistence strategy.

We use an HTM-based hash table to illustrate the modified strat-
egy. Assume the hash table contains an array of buckets, each hold-
ing up to BUCKET_SIZE elements. For simplicity, we omit cases
of full buckets and table resizing. As illustrated in Listing 1, a
thread marks its operation with beginOp() (line 8) and endOp()
(line 55). After finding the target key-value (KV) block in NVM,
the thread must check the epoch number before performing an up-
date (lines 20–32). An NVM block can be updated directly if it was
created in the current epoch (line 29). Otherwise, if it was created
in a later epoch by another thread, the current thread must abort
with OldSeeNewException, as overwriting a newer block in an old
epoch would violate BDL. The thread then restarts its operation
in the current (newer) epoch (lines 39–41). If the block’s epoch
number is smaller than the operation’s epoch, the thread replaces
the block with a preallocated one and marks the original block for
reclamation (lines 24–28).

NVM allocation must occur outside the HTM transaction to
avoid aborts. The need for allocation, however, is only determined
once the block’s tracking epoch is retrieved within the transaction.
Preallocation is required in the general case, but can be wasteful
when the block can be updated in place. To avoid unnecessary over-
head, each thread maintains a thread-local NVM block, new_blk,
and only allocates a new one when new_blk has been used (lines 28
and 36). In Montage [55], the epoch system tags each NVM block
with an epoch number at allocation time. Because we may not use

1 EpochSys* esys;

2 Mutex global_lock;

3 thread_local void* new_blk , *retire_blk , *persist_blk;

4
5 Insert(k_type k, v_type v) {

6 auto k_hash = hash(k);

7 retry_regist:

8 uint64_t op_epoch = esys ->beginOp ();

9 // skip allocation if a block is already available

10 if (! new_blk) new_blk = esys ->pNew();

11 // initialize memory block

12 new (new_blk) KVPair(k, v, INVALID_EPOCH);

13 retry_txn:

14 int status = _xbegin ();

15 if (status == _XBEGIN_STARTED) {

16 if (global_lock.locked ()) _xabort(Locked);

17 new_blk ->setEpoch(op_epoch);

18 auto bucket = hash_table ->get_bucket(k_hash);

19 for (int i = 0; i < BUCKET_SIZE; ++i) {

20 if (bucket[i]->get_key () == k) { //found , update

21 if (bucket[i]->getEpoch () > op_epoch) {

22 //do not update block modified in later epoch

23 _xabort(OldSeeNewException);

24 } else if (bucket[i]->getEpoch () < op_epoch) {

25 retire_blk = bucket[i]; // reclaim old block

26 bucket[i] = new_blk; // add new block

27 persist_blk = new_blk; // track new block

28 new_blk = nullptr; // preallocated block used

29 } else bucket[i]->pSet(k, v); //in-place update

30 _xend();

31 goto op_done;

32 }

33 }

34 bucket ->insert(new_blk); // not found , insert

35 persist_blk = new_blk;

36 new_blk = nullptr;

37 _xend();

38 } else {

39 if (status == OldSeeNewException) {

40 esys ->abortOp (); // abort to restart in new epoch

41 goto retry_regist;

42 } else if (status == Locked) {

43 while (global_lock.locked ()) {} // spin

44 goto retry_txn;

45 }

46 global_lock.acquire ();

47 /* fallback path similar to lines 20-36 */

48 global_lock.release ();

49 }

50 op_done:

51 if (retire_blk) esys ->pRetire(retire_blk);

52 if (persist_blk) esys ->pTrack(persist_blk);

53 retire_blk = nullptr;

54 persist_blk = nullptr;

55 esys ->endOp();

56 }

Listing 1: BDL HTM strategy applied to the Insert operation
of a simple hash table. API calls are shown in blue. The
_xbegin, _xend, and _xabort calls are Intel HTM intrinsics.

a preallocated block for an arbitrary amount of time, we modify the
epoch system to assign new blocks an invalid epoch number. We
update this number with a new API method (setEpoch()) when
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we’re about to use the block (line 17), and reset it to invalid when
starting a new operation (line 12). In all cases, memory persistence
and reclamation are delayed until after an HTM transaction has
committed (lines 51–52). During recovery, NVM blocks with an
invalid epoch number are simply reclaimed.

4 Case Studies
Our case studies cover three cutting-edge dictionary structures:
a vEB tree (transient, HTM-synchronized, with doubly logarith-
mic complexity), a skiplist (persistent, lock-free, with logarithmic
complexity), and a hash table (persistent, HTM-synchronized, cus-
tomized for eADR, with 𝑂 (1) complexity). In Sec. 4.1, we convert
the vEB tree to a buffered durable version, evaluate its persistence
overhead, and compare its performance to that of persistent al-
ternatives. In Sec. 4.2, we relax the persistence requirement of the
persistent skiplist and use HTM to optimize its concurrency control,
reducing synchronization overhead, persistence overhead, and pro-
gramming complexity. In Sec. 4.3, we modify the eADR-based hash
table to be buffered durable, preserving its HTM compatibility and
maintaining NVM optimizations for systems with volatile caches.
In all cases, our BDL structures store only critical data in NVM,
rebuilding indices as needed during post-crash recovery.

All experiments were conducted on a 40-core machine (80 hard-
ware threads) consisting of two Intel Xeon Gold 6230 processors
with 20 cores each. Each processor is equipped with six channels of
128GB Intel Optane DC persistentmemory configured in AppDirect
mode. The YCSB benchmark is employed to generate workloads
with uniform and Zipfian distributions, with the Zipfian constant
set (unless otherwise noted) to the default value of 0.99. For the
sake of consistency with previous studies in the literature, we eval-
uate the data structures using 8-byte keys and 8-byte values. Data
structures were prefilled with pairs representing half of the key
space, and write operations employed a 50/50 mix of inserts and
removes to keep the sizes of structures stable. For buffered durable
structures, the epoch length was set (again, unless otherwise noted)
to 50ms. Hyper-threading was disabled to avoid capacity-related
HTM aborts.

4.1 Porting HTM-based Structures to NVM
Sets and dictionaries (maps) are among the most important (se-
quential and concurrent) data abstractions. While hash tables offer
O(1) complexity for most operations, their lack of ordering pre-
cludes efficient range, successor and predecessor queries. B-trees
and tries provide logarithmic complexity. A few structures—notably
van Emde Boas (vEB) trees [50]—are doubly logarithmic.

Briefly, a vEB tree for a universe of𝑈 elements has a root node
containing (1) an array of pointers to up to

√
𝑈 subtrees, each for a

sub-universe of size
√
𝑈 , and (2) one additional such subtree—the

summary, that indicates which of the main subtrees exist (i.e., are
nonempty). The purpose of the summary—and of its analogues
at lower levels of the tree—is to support rapid location of succes-
sor keys, thereby enabling fast range queries. When keys are uni-
formly distributed across the universe set, space consumption can
be 𝑂 (𝑈 )—a serious disadvantage when the keys are also sparse.
In practice, however, with non-uniform key distribution, many
subtrees will typically be missing.
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Figure 1: Throughput of transient and buffered durable vEB
trees (write-heavy workload). The X-axis represents the num-
ber of threads. The universe size of keys is 226. Zipfian con-
stant is set to 0.99.

Implementing a concurrent vEB tree is extremely challenging,
and previous attempts have tended to compromise complexity,
safety, or both. To the best of our knowledge, the only publicly
available implementation that supports fully linearizable concur-
rent accesses while preserving time complexity is due to Khalaji
et al. [28]. Their tree (referred to here as HTM-vEB) protects each
operation with an HTM transaction; sadly, this strategy precludes
the straightforward addition of durable linearizability.

Following the strategy of Listing 1, we enhance HTM-vEB with
buffered durability instead, creating a PHTM-vEB tree. In the tran-
sient vEB tree, only values are stored in leaf nodes: keys are implicit
in the location in the tree. For the sake of speed and simplicity,
we keep the PHTM-vEB index structure in DRAM, with pointers
at the leaves that reference KV pairs in NVM. During crash-free
execution, a PHTM-vEB lookup traverses the tree as HTM-vEB
does and then retrieves a value from NVM. After a system crash,
PHTM-vEB reconstructs the tree by scanning KV pairs.

To assess the overhead introduced by buffered durability, we com-
pare the throughput of HTM-vEB and PHTM-vEB (Fig. 1).While the
latter is slower, the difference seems quite reasonable: Optane mem-
ory has roughly one third the bandwidth of DRAM, 3× the latency
for reads, and 10× the latency for writes, but on a single socket
(thread count less than 20), PHTM-vEB remains within roughly a
factor of 2 of HTM-vEB bandwidth. On two sockets, where Optane
is known to perform more poorly than DRAM [46], PHTM-vEB is
within a factor of 3 of HTM-vEB for uniformwrite-heavyworkloads
(Fig. 1(a)) and still within a factor of 2 for Zipfian or read-heavy
(not shown) workloads.

The primary source of overhead in PHTM-vEB turns out to be
memory management for KV pairs. When a pair is inserted in
the tree, a new NVM block must be allocated if the key was not
previously present or was last given a value in a prior epoch. NVM
reclamation occurs when a KV pair is deleted or replaced by a newer
version in a subsequent epoch. The Ralloc persistent allocator [8],
used in our experiments, is fast and nonblocking, but its work is
avoided entirely in HTM-vEB, which keeps values in the leaves of
the main tree. The overhead of the epoch system itself is offloaded
to a background thread in PHTM-vEB, and has relatively minor
impact on the critical path.
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In a larger context, we can see the value of doubly logarithmic
time—and the success of PHTM-vEB—by comparing to state-of-the-
art persistent search trees. For this we consider the LB+Tree of Liu
et al. [32] and the OCC-ABTree and Elim-ABTree of Srivastava
and Brown [48]. The LB+Tree is a persistent B+ tree customized
for NVM. It employs per-node locks for concurrency control, keeps
inner nodes in DRAM for fast tree traversal, and puts leaf nodes
in NVM. Much as in PHTM-vEB, the internal tree is rebuilt by
scanning the leaf layer in the wake of a crash. The (a, b) trees are
B-tree variants that allow between 𝑎 and 𝑏 keys per node (𝑎 ≤ 𝑏/2).
The OCC-ABTree uses fine-grained versioned locks for update
atomicity, and version-based validation (optimistic concurrency
control) for search correctness. The Elim-ABTree, optimized for
skewed workloads, introduces publishing elimination, which re-
orders and eliminates concurrent inserts and deletes to reduce both
the total number of operations and the number of writes to NVM.
Both OCC-ABTree and Elim-ABTree are fully persistent. Despite
these many optimizations, our throughput results, shown in Fig. 3,
demonstrate that (at least for workloads that can tolerate the space
consumption) vEB trees are a major win: by combining HTM and
buffered durability, PHTM-vEB outperforms LB+Tree by 1.2–2.8×,
and Elim-ABTree and OCC-ABTree by 1.6–4×.

The vEB tree delivers excellent performance at the cost of sig-
nificantly higher space consumption. We evaluated the DRAM and
NVM usage of each tree, initialized with half the keys (uniformly
distributed) in a universe of size 226. Results appear in table 3.
PHTM-vEB and volatile HTM-vEB have the same DRAM consump-
tion, which is 16× higher than that of LB+Tree (with only the inner
tree stored in DRAM). Fully persistent trees—Elim-Tree and OCC-
Tree—on the other hand, use no DRAM. In addition, PHTM-vEB
incurs higher NVM consumption because it stores not only the KV
pairs but also their copies from previous epochs. The other trees
maintain only a single record per KV pair. Furthermore, the KV
pairs in PHTM-vEB include extra metadata required for post-crash
recovery, such as epoch number and block type (e.g., allocated but
not used, deleted). The NVM space consumption of PHTM-vEB is
dependent to some degree on the epoch length; we discuss this in
Section 5.1.

As buffering increases memory footprint, one could imagine
this leading to higher cache eviction rates and thus transaction
aborts. One could also imagine background writes-back from the
epoch system aborting transactions that happened to be using the
written-back lines. To investigate these possibilities, we measured
the transaction abort rate (Fig. 2) for varying thread counts and
workloads (with the epoch length remaining at 50ms). Despite
the increased tree size and background cache line evictions, we
see no significant difference in transaction abort rates between
HTM-vEB and PHTM-vEB. Moreover, as Fig. 1 and Fig. 2 show,

Table 3: Space consumption (in MiB) of search trees with 225
keys, drawn from a universe of 226.

Tree HTM-vEB PHTM-vEB LB+Tree Elim-Tree OCC-Tree
DRAM 1073 1073 67 0 0
NVM 0 1257 698 774 779
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Figure 2: HTM commit and abort rates (in percentage) for
HTM-vEB and PHTM-vEB trees. Key space size is 226. The
X-axis shows the number of threads. In each figure, the left
bars (solid border) correspond to HTM-vEB, and right bars
(dashed border) correspond to PHTM-vEB.

PHTM-vEB scales nearly as well as its transient cousin. Conflict-
driven aborts increase with the number of threads, but remain
below 15% for uniform workloads and 35% for Zipfian workloads.
Mysteriously, at low thread counts, up to half of our transactions
initially aborted with a reported cause of “incompatible memory
type” (ABORTED_MEMTYPE). Similar aborts have been reported
in previous work [21]. Intel documentation attributes such aborts
to the use of uncacheable memory, but there is none in either
HTM-vEB or PHTM-vEB. Interestingly, the problem did not appear
when we repeated experiments on a separate, single-processor
machine (10-core Xeon Gold 5215; one 128GB Optane module in
AppDirect mode). As a work-around, we added a non-transactional
“pre-walk” of the tree after eachMEMTYPE abort before retrying
the transaction; this reduced the single-core abort rate to about 5%
(red bars in Fig. 2).

4.2 Optimizing Concurrency Control in
Already-persistent Data Structures

Durably linearizable data structures must persist critical updates im-
mediately to maintain a consistent execution history in NVM. This
requirement precludes the use of HTM and introduces significant
overhead. The overhead is particularly pronounced in persistent
lock-free structures, which often employ complex protocols to up-
date multiple locations atomically and persistently. Consider, for
example, the durably linearizable lock-free DL-Skiplist of Wang
et al. [54], which employs a persistent multi-word compare-and-
swap (PMwCAS). Each PMwCAS operation starts by allocating a
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Figure 3: Throughput of persistent trees with uniform (top) or Zipfian (bottom) key distributions, and write-heavy (left) or
read-heavy (right) workloads. X is the number of threads.

descriptor in NVM, which it must persist immediately to avoid a
memory leak. The operation then initializes the descriptor with a
set of memory addresses, together with old and new values, which
need to be updated atomically; these values also require immediate
persistence. To effect its updates, PMwCAS then swaps (installs) the
descriptor into each of the target addresses, persisting each one in
turn. After performing (and persisting) a single CAS to change the
descriptor from “in progress” to “committed,” PMwCAS then swaps
new values in place of the descriptor address in each of the modified
words; these changes must also persist before the descriptor can be
reclaimed. Along the way, PMwCAS may issue extra persist oper-
ations to assist pending PMwCAS operations from other threads.
When all is done, PMwCAS deallocates the descriptor and persists
the deallocation. This entire process incurs not only significant
persistence overhead but also additional maintenance costs due to
memory management.

To assess the cost of PMwCAS, we conducted a simple experi-
ment inwhich threads repeatedly update 2, 4, or 8 randomly selected
locations within an array of one million cache line-aligned slots in
NVM. As a baseline, the Mw-WR (multi-word write) bars in Fig. 4
show the throughput of performing the updates without any syn-
chronization or persistence. The HTM-MwCAS bars reflect updates
performed inside an HTM transaction, again without persistence.
These incur only modest cost relative to Mw-WR. MwCAS—a tran-
sient version of PMwCAS—omits persist instructions; it is slower

than HTM-MwCAS because it relies on the descriptor-based proto-
col, which has much more overhead than HTM. PMwCAS incurs
a performance drop of over 10×, relative to even MwCAS, due to
the cost of persistence instructions and cache miss penalties (all
write-back instructions on our machine invalidate target lines).
These results suggest that buffered durability, together with HTM,
might significantly improve the performance of PMwCAS-based
structures.

To pursue this possibility, we modified the DL-Skiplist and ran
experiments with 1 million keys for 30 s (as before, keys and values
each comprise 8 bytes). Results appear in Fig. 5. The original algo-
rithm is fully persistent, in the sense that all nodes reside in NVM.
It’s also strictly DL: critical updates are persisted before return-
ing to the caller. By contrast, our BDL-Skiplist is buffered durably
linearizable, enabling the use of HTM. It maintains its indexing
data in DRAM and persists only KV pairs in NVM. Across a range
of thread counts, BD-Skiplist sustains about 3× the throughput of
DL-Skiplist. We attribute this improvement to three factors. First,
by keeping the skiplist towers in DRAM, we obtain substantially
faster searches, at least when lists do not fit in the cache. Second, we
reduce persistence overhead by writing back KV pairs periodically
in the background, rather than on the critical path. Third, we reduce
the overhead of MwCAS by using HTM.

By building additional (nonsensical) algorithms, shown as ex-
tra bars in Fig. 5, we can tease apart the impact of these factors.
P-Skiplist-no-flush removes persist instructions from DL-Skiplist
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(abandoning durable linearizability), achieving ~1.7× the through-
put of DL-Skiplist. P-Skiplist-HTM-MCAS uses HTM to optimize
MwCAS, achieving an additional improvement of ~10%. (Note that
while both P-Skiplist-no-flush and P-Skiplist-HTM-MwCAS store
the entire data structure in NVM, neither is crash consistent.) As
a final data point, T-Skiplist, synchronized with MwCAS, stores
the entire data structure in DRAM; it outperforms BDL-Skiplist
by only ~20%. Given the small transaction footprint and narrow
temporal window of vulnerability, optimizing MwCAS with HTM
results in very few transaction aborts. In practice, this means that
our skiplist preserves most of the advantages (preemption toler-
ance, low tail latency) of the nonblocking algorithm. Buffering does,
however, require extra space in NVM, to store KV pairs and stale
copies; we explore this further in Section 5.1.

4.3 Porting eADR-based Structures Back to ADR
Persistent cache (Intel eADR) simplifies persistent programming
by ensuring crash consistency without explicit writes-back, and
by enabling the use of HTM. At the same time, it allows write-
back instructions to be used to optimize cache and memory system
performance, potentially increasing throughput and reducing NVM
wear-out. In this section, we consider the optimizations employed
by Spash [62], a state-of-the art persistent hash table designed for
eADR machines. Using buffered durability, we show how many

of the optimizations can be back-ported to machines with volatile
(ADR) caches.

Given the freedom to use writes-back for performance (rather
than correctness), Spash tracks its access pattern in a lightweight
structure in DRAM, allowing it to distinguish hot and cold KV pairs.
It proactively flushes the cold pairs to NVM, freeing space for hot
data and improving the cache hit rate. To use NVM bandwidth
as efficiently as possible, Spash flushes data only when their size
exceeds the NVM-internal access granularity (one “XPLine”—256 B
for first-generation Optane). Cold pairs that are smaller than this
size are appended to a 256 B thread-local memory chunk, with
an indirection pointer placed in the hash-table bucket. The actual
data can then be flushed at XPLine granularity, saving bandwidth
throughout the memory hierarchy [56] and avoiding write amplifi-
cation.

Spash employs HTM for low-overhead concurrency control, us-
ing a fine-grained structure that avoids transaction aborts due to
capacity misses. Specifically, the top level of the hash table consists
of a directory containing pointers to segments, each of which con-
tains multiple buckets. The segment size is always a multiple of the
XPLine size, and buckets are always a multiple of the cache line size.
Read and write requests typically access only a few directory entries
and segments. When the load factor gets too high, the directory
is doubled in size and segments are moved from the old directory
to the new. The directory doubling is protected by a global lock
but happens quickly. Segments are moved in the background using
HTM transactions. Worker threads assist in this process whenever
they try to use a directory entry whose segments have not yet been
moved.

To accommodate ADR platforms without losing Spash’s opti-
mizations and HTM compatibility, we integrate it with our epoch
system, resulting in BD-Spash. If eADR is detected, the epoch sys-
tem automatically disables itself, allowing BD-Spash to seamlessly
operate on both ADR and eADR machines. BD-Spash stores its
directory and buckets in DRAM. Buckets in turn contain pointers
to KV pairs in NVM. BD-Spash uses the hotspot detector to decide
whether an NVM block should be persisted immediately or deferred:
large cold data is persisted at once to optimize cache usage and
NVM bandwidth, while small cold data and hot data are tracked
by the epoch system for delayed persistence. BD-Spash does not
coalesce small cold writes for two reasons. First, compacting these
writes in thread-local chunks adds overhead to store indirection
pointers in appropriate buckets, and to follow these pointers when
reading the data. Compacting also introduces extra memory man-
agement costs since stale chunks must be reclaimed periodically.
Second, by delaying writes to epoch boundaries, the epoch system
naturally coalesces many writes to adjacent KV pairs, even when
they occur up to an epoch apart in time.

We compared BD-Spash against Spash and two other persis-
tent hash tables: CCEH [36] and Plush [51]. CCEH (cache-line–
conscious extendible hashing) is a fully persistent hash table that
guarantees failure atomicity without explicit logging. Like Spash, it
employs a directory containing pointers to multi-bucket segments.
Updates are synchronized with reader-writer locks; searches are
lock free. Each operation performs enough writes-back and fences
that post-crash recovery can roll partially completed operations
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Figure 6: Throughput of persistent hash tables with Uniform (top) or Zipfian (bottom) workloads, characterizing by write-heavy
(left) or read-heavy (right). X-axis is the number of threads.

forward or backward and release all locks. Plush adopts a log-
structured, layered approach, somewhat akin to an LSM tree [43],
with the root level in DRAM and the rest in NVM. Each level is a
multiple of the previous level in size. When buckets overflow, data is
re-hashed and appended to buckets in the next deeper level. Lookup
operations probe a filter at each level. To ensure failure atomicity,
Plush persists log entries before a write operation returns.

Performance results appear in Fig. 6. Relative to Spash, the other
hash tables pay higher persistence costs for memory management
and NVM writes, on the assumption that caches are transient. BD-
Spash minimizes this overhead through batched, background per-
sistence performed by its epoch system, essentially matching the
throughput of Spash on the write-heavy Zipfian workload and com-
ing close in the other three cases. CCEH and Plush are significantly
slower than BD-Spash, due largely to the overhead of strict DL.
CCEH’s log-free design is optimized for writes, allowing it to out-
perform Plush for both uniform and Zipfian write-heavy workloads.
The advantage disappears in the read-heavy case, particularly when
threads are spread across the sockets of the machine. Despite its
use of DRAM in the initial layer of the structure, Plush suffers from
expensive logging on the critical path in every subsequent layer;
with a skewed workload, this logging induces contention that leads
to the lower Plush performance in Fig. 6(c). If logging is disabled
(results not shown), Plush throughput improves by 1.8×, but this
of course forfeits crash consistency.

5 Discussion
The API of Table 2 makes it straightforward to adapt volatile or
persistent data structures to buffered durability. Certain guidelines
should be followed, however, to guarantee BDL and to fully lever-
age HTM. Beyond avoiding instructions conflicting with HTM (e.g.,
non-temporal stores and flush), programmers should also avoid
any operations that might implicitly invoke these instructions.
NVM allocators, for example, typically rely on flush instructions
to avoid permanent memory leaks, and compiler intrinsics such as
store_stream use non-temporal instructions. Some standard library
routines (e.g., memcpy and memset in glibc) may internally switch
to non-temporal accesses under certain conditions (large copy sizes,
alignment, certain CPU models). If a program experiences unex-
pectedly high abort rates, profiling tools like Perf [15] can help
identify the culprit instructions.

Because NVM allocation in our strategy is performed outside
of transactions and manually managed, extra care is needed to
preserve BDL. First, any preallocated but unused NVM block must
have its epoch set to invalid. If an operation sets the block’s epoch
but is later interrupted, that epoch must be reset to invalid upon
restart. Second, the epoch number should be assigned before the
operation’s linearization point; otherwise, other threads may see
the operation without being able to determine whether it belongs
to the same epoch or a newer one, making it impossible to decide
if they should abort or continue. Note that in the event of a crash,
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Figure 7: Throughput of single-threaded PHTM-vEBwith dif-
ferent epoch lengths and workload distributions. The work-
load size is 222, with 80% writes and 20% reads.

any block that has been assigned an epoch in a not-yet-completed
operation will be in an epoch that is discarded in recovery, allowing
the block to be reclaimed.

5.1 Epoch length
Epoch length determines the frequency of data persistence, poten-
tially influencing system performance via (1) transaction abort rate,
(2) cache utilization, (3) NVM space consumption, and (4) NVM
bandwidth usage. Background flushes can invalidate active trans-
actions whose read/write sets include evicted data. They can also
reduce cache efficiency and increase NVM bandwidth consumption
by forcing data out from cache to NVM, necessitating reloads when
data are accessed again. Intuitively, increasing the epoch length
might be expected to reduce transaction aborts and cache misses
caused by background flushes, and to save NVM bandwidth by serv-
ing reads and writes directly from the cache, thereby improving
performance. At the same time, longer epochs might exacerbate
memory usage, depending on workload characteristics. In BDL,
in-place updates to data from prior epochs are prohibited; thus, any
update to data from epoch 𝑥 in a later epoch 𝑦 (𝑦 > 𝑥) requires
allocating a new block, leaving the old block intact for crash re-
covery. The old block cannot be reclaimed until epoch 𝑦 + 2, when
the epoch system ensures that the new block has persisted. Con-
sequently, longer epochs may lead to more out-of-place updates
when workloads exhibit poor locality, leading to increased mem-
ory consumption, poorer cache utilization, and higher memory
management overhead, all of which may degrade performance. We
consider these tradeoffs in more detail below.

Transaction abort rate. Our PHTM-vEB tree is particularly sus-
ceptible to background flushes, because full operations are enclosed
in HTM transactions, incurring a large footprint in both time and
space. To measure sensitivity to epoch length, we conducted exper-
iments with 1–16 threads, epoch lengths from 1 𝜇s all the way to
10 s (a window of potential data loss that most users would consider
unacceptable), a data set of 1–67M records, and both uniform and
Zipfian workloads. In all cases, background flushes caused fewer

than 2% of transactions to abort. We conclude that aborts induced
by the epoch system are not a significant concern.

Cache utilization. Caches mitigate the latency of memory, signif-
icantly enhancing performance when data accesses exhibit strong
temporal locality. Flush instructions, however, can expose this la-
tency on the critical path by invalidating frequently reused cache
lines. Our experiments indicate that for uniform workloads with
working sets exceeding cache capacity, background data persis-
tence imposes minimal overhead, as random accesses derive little
benefit from caching. For highly skewed workloads, however, when
most accesses target a small range of data that can be cached, back-
ground persistence incurs noticeable overhead. As shown in Fig. 7,
increasing the epoch length from 1 𝜇 to 10ms yields performance
improvements of 16.7% and 26.7% for Zipfian workloads with con-
stants of 0.9 and 0.99, respectively (the 0.99 constant indicating
greater skew). However, further increases in epoch length yield di-
minishing returns due to increasedmemory usage, leading to higher
cache eviction rates and greater memory management overhead
(more on this below).

NVM Space consumption. In a BDL data structure, up to three
copies of each record may coexist: a fully persisted copy (from at
least two epochs ago), a copy pending persistence (updated in the
previous epoch), and an actively modified copy (from the current
epoch). Consequently, the overall NVM footprint of a BDL structure
may depend on both the epoch length and the frequency of data
accesses and updates. For a fixed epoch length, uniform workloads
tend to incur higher space consumption because data is accessed
with equal probability, leading to more out-of-place updates and
fewer in-place modifications. Likewise, for a given workload distri-
bution, longer epochs result in increased space usage because stale
data blocks are retained longer, delaying memory recycling and ex-
panding the memory footprint. We illustrate these trends using the
PHTM-vEB structure, measuring NVM usage with epoch lengths
ranging from 1 𝜇s to 10 s under both uniform and Zipfian distri-
butions. As shown in Fig. 8, uniform workloads have higher space
consumption due to frequent out-of-place updates, while longer
epochs exacerbate space usage primarily because buffered NVM
allocations and deletions remain unconfirmed by the epoch system
for an extended period. At the same time, with the exception of the
extreme 10 s case, the variations in Fig. 8 are relatively modest, sug-
gesting that BDL structures can be expected to display reasonable
performance and space consumption across a wide range of use
cases and configurations.

NVM bandwidth usage. Data is persisted to NVM in two ways:
controlled epoch-based flushes and uncontrolled cache eviction.
Epoch flushes are crucial for crash consistency, and represent a pre-
dictable trade-off between write frequency and size: shorter epochs
buffer less data, leading to smaller but more frequent writes; longer
epochs buffer more data for larger, less frequent writes. In contrast,
cache evictions introduce unnecessary access amplification. Read
amplification occurs when evicted data is later accessed within the
same epoch, forcing a reload from NVM.Write amplification occurs
when data is evicted before the epoch ends, preventing multiple
updates to the same location from being coalesced in the cache and
resulting in redundant writes to NVM. To mitigate amplification,
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Figure 8: NVM space consumption of PHTM-vEB under uni-
form (left barswith solid border) and zipfianworkloads (right
bars with dashed border). Key space is 224, with a single thread
performing 50% insert and 50% remove operations.

the volume of data buffered within an epoch should not exceed
the available cache capacity. This volume can be modeled [17] as a
function of throughput and epoch length, a relationship that holds
regardless of the data structure type. Our evaluation shows that
even with the highest-throughput data structures (PHTM-vEB on
20 threads), an epoch length of 100ms generates 43 MiB of buffered
data. This amount fits within the 48 MiB of combined L1, L2 and
L3 cache on our test machine.

Overall, our experiments indicate that BDL data structures offer
stable performance with only a modest increase in NVM space for
duplicate data (old copies and pending deletions), over a wide range
of epoch lengths. Thus, performance is robust with respect to epoch
length, and fine-tuning this parameter is not essential. In practice,
epoch lengths between 10ms and 100ms yield excellent perfor-
mance, efficient cache utilization, and only a moderate increase in
NVM usage.

5.2 Recovery
BDL data structures recover to a pre-crash state by scanning the
NVM heap that stores data blocks. The recovery procedure first
retrieves the global epoch number (persisted at each epoch tran-
sition) and then compares it with the epoch number of each data
block. Specifically, data blocks that either (1) are valid (e.g., marked
as ALLOCATED) and are at least two epochs older than the global
epoch, or (2) were deleted (marked as DELETED with a valid delete
epoch number) within the past two epochs but whose deletion has
not been persisted by the epoch system, are recovered; all other
blocks are reclaimed by the allocator.

Recovery of a BDL data structure is rapid because sequential
NVM scanning delivers high bandwidth, and the reconstruction
of indexing structures is performed in DRAM, which also offers
high bandwidth. For example, using a single thread, scanning a
500 MiB heap containing 10 million records takes about 163ms,

while rebuilding the indexing structures requires roughly 2.9 s for
the PHTM-vEB tree, 37.3 seconds for the BDL-Skiplist, and 5.4 s
for BD-Spash. With 20 threads, heap scanning is reduced to under
10ms, and the reconstruction times drop to 0.2 s, 4.6 s, and 0.39 s,
respectively. When scaling to a 5 GB data set containing 100 million
records, even if with the slowest BDL-Skiplist, recovery only takes
50 s when using 20 threads.

6 Conclusion
Designing efficient concurrent data structures is inherently chal-
lenging, and HTM has emerged as a promising means of combining
simplicity and performance. Meanwhile, nonvolatile memory opens
the door to durable data structures, allowing in-memory structures
to survive system crashes consistently. In a reversal of conventional
wisdom, our work demonstrates that HTM and NVM can be com-
bined, in a straightforward, general, and efficient way, using buffered
durable linearizability (BDL), achieving both atomicity and dura-
bility at reasonable levels of programmer effort. More specifically,
we have used BDL to (1) add persistence to HTM-based volatile
data structures, (2) reduce the overhead of concurrency control in
already persistent structures, and (3) allow structures designed for
persistent caches to be back-ported to systems with transient cache
while preserving performance optimizations. As data set sizes con-
tinue to increase and as technologies like CXL make effectively
nonvolatile data-center memory ubiquitous, persistent indexing
structures are likely to be ever more important. Buffered durability,
combined with HTM, can make these structures more efficient and
easier to synchronize.
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