
786 Chapter 15 Building a Runnable Program

reg names : array [0..k−1] of register name := [“r1”, “r2”, . . . , “rk”]
–– ordered set of temporaries

program −→ stmt
� stmt.next free reg := 0
� program.code := [“main:”] + stmt.code + [“goto exit”]

while : stmt1 −→ expr stmt2 stmt3

� expr.next free reg := stmt2.next free reg := stmt3.next free reg := stmt1.next free reg
� L1 := new label(); L2 := new label()

stmt1.code := [“goto” L1] + [L2 “:”] + stmt2.code + [L1 “:”] + expr.code
+ [“if” expr.reg “goto” L2] + stmt3.code

if : stmt1 −→ expr stmt2 stmt3 stmt4

� expr.next free reg := stmt2.next free reg := stmt3.next free reg := stmt4.next free reg :=
stmt1.next free reg

� L1 := new label(); L2 := new label()
stmt1.code := expr.code + [“if” expr.reg “goto” L1] + stmt3.code + [“goto” L2]

+ [L1 “:”] + stmt2.code + [L2 “:”] + stmt4.code

assign : stmt1 −→ id expr stmt2

� expr.next free reg := stmt2.next free reg := stmt1.next free reg
� stmt1.code := expr.code + [id.stp→symbol “:=” expr.reg] + stmt2.code

call : stmt1 −→ id expr stmt2

� expr.next free reg := stmt2.next free reg := stmt1.next free reg
� stmt1.code := expr.code + [“a1 :=” expr.reg] + [“call” id.stp→symbol] + stmt2.code

call : expr1 −→ id expr2

� expr2.next free reg := expr1.next free reg
� expr1.reg := reg names[expr1.next free reg mod k]

expr1.code := expr2.code + [“a1 :=” expr2.reg] + [“call” id.stp→symbol] + [expr1.reg “:= rv”]

null : expr −→ ε

� expr.reg := “r1” –– harmless
expr.code := null

null : stmt −→ ε

� stmt.code := null

‘<>’ : expr1 −→ expr2 expr3

handle op(expr1, expr2, expr3, “6=”)

‘>’ : expr1 −→ expr2 expr3

handle op(expr1, expr2, expr3, “>”)

‘−’ : expr1 −→ expr2 expr3

handle op(expr1, expr2, expr3, “−”)

id : expr −→ ε

� expr.reg := reg names[expr.next free reg mod k]
� expr.code := [expr.reg “:=” expr.stp→symbol]

Figure 15.6 Attribute grammar to generate code from a syntax tree. Square brackets delimit individual target instructions.
Juxtaposition indicates concatenation within instructions; the ‘+’ operator indicates concatenation of instruction lists. The
handle op macro is used in three of the attribute rules. (continued)



15.3 Code Generation 787

macro handle op(ref result, L operand, R operand : syntax tree node; op : string)
� L operand.next free reg := result.next free reg

R operand.next free reg := result.next free reg + 1
� result.reg := L operand.reg

if R operand.next free reg < k
spill code := restore code := null

else
spill code := [“*sp :=” reg names[R operand.next free reg mod k]]

+ [“sp := sp − 4”]
restore code := [“sp := sp + 4”]

+ [reg names[R operand.next free reg mod k] “:= *sp”]
result.code := L operand.code + spill code + R operand.code

+ [result.reg “:=” L operand.reg op R operand.reg] + restore code

Figure 15.6 (continued)

Chapter 4, notation like while : stmt on the left-hand side of a production in-
dicates that a while node in the syntax tree is one of several kinds of stmt node;
it may serve as the stmt in the right-hand side of its parent production. In our
attribute grammar fragment, program, expr, and stmt all have a synthesized at-
tribute code that contains a sequence of instructions. Program has an inherited
attribute name of type string, obtained from the compiler command line. Id
has a synthesized attribute stp that points to the symbol table entry for the iden-
tifier. Expr has a synthesized attribute reg that indicates the register that will
hold the value of the computed expression at run time. Expr and stmt have an
inherited attribute next free reg that indicates the next register (in an ordered
set of temporaries) that is available for use (i.e., that will hold no useful value at
run time) immediately before evaluation of a given expression or statement. (For
simplicity, we will be managing registers as if they were a stack; more on this in
Section 15.3.2.) �

Because we use a symbol table in our example, and because symbol tables lie
outside the formal attribute grammar framework, we must augment our attribute
grammar with some extra code for storage management. Specifically, prior to
evaluating the attribute rules of Figure 15.6, we must traverse the symbol table in
order to calculate stack-frame offsets for local variables and parameters (two of
which—i and j—occur in the GCD program) and in order to generate assembler
directives to allocate space for global variables (of which our program has none).
Storage allocation and other assembler directives will be discussed in more detail
in Section 15.5.

15.3.2 Register Allocation

Evaluation of the rules of the attribute grammar itself consists of two main tasks.
In each subtree we first determine the registers that will be used to hold various
quantities at run time; then we generate code. Our naive register allocation strat-EXAMPLE 15.7

Stack-based register
allocation



15.3 Code Generation 789

–– first few lines generated during symbol table traversal
.data –– begin static data

i: .word 0 –– reserve one word to hold i
j: .word 0 –– reserve one word to hold j

.text –– begin text (code)
–– remaining lines accumulated into program.code

main:
a1 := r1 –– harmless
call getint –– “getint” and “putint” are library subroutines,

–– to be found by the linker
r1 := rv
i := r1
a1 := r1 –– harmless
call getint
r1 := rv
j := r1
goto L1

L2: r1 := i –– body of while loop
r2 := j
r1 := r1 > r2
if r1 goto L3
r1 := j –– “else” part
r2 := i
r1 := r1 − r2
j := r1
goto L4

L3: r1 := i –– “then” part
r2 := j
r1 := r1 − r2
i := r1

L4:
L1: r1 := i –– test terminating condition

r2 := j
r1 := r1 6= r2
if r1 goto L2
r1 := i
a1 := r1
call putint
goto exit –– return to operating system

Figure 15.7 Target code for the GCD program, generated from the syntax tree of Figure 15.2,
using the attribute grammar of Figure 15.6.


