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Abstract—Data movement latency when using on-chip accel-
erators in emerging heterogeneous architectures is a serious
performance bottleneck. While hardware/software mechanisms
such as peer-to-peer DMA between producer/consumer accel-
erators allow bypassing main memory and significantly reduce
main memory contention, schedulers in both the hardware and
software domains remain oblivious to their presence. Instead,
most contemporary schedulers tend to be deadline-driven, with
improved utilization and/or throughput serving as secondary or
co-primary goals. This lack of focus on data communication will
only worsen execution times as accelerator latencies reduce.

In this paper, we present RELIEF (RElaxing Least-laxIty to
Enable Forwarding), an online least laxity-driven accelerator
scheduling policy that relieves memory pressure in accelerator-
rich architectures via data movement-aware scheduling. RELIEF
leverages laxity (time margin to a deadline) to opportunistically
utilize available hardware data forwarding mechanisms while
minimizing quality-of-service (QoS) degradation and unfairness.
RELIEF achieves up to 50% more forwards compared to state-
of-the-art policies, reducing main memory traffic and energy
consumption by up to 32% and 18%, respectively. At the same
time, RELIEF meets 14% more task deadlines on average and
reduces worst-case deadline violation by 14%, highlighting QoS
and fairness improvements.

I. INTRODUCTION

Modern smartphone systems-on-chip (SoCs) comprise of
several dozens of domain-specific hardware accelerators dedi-
cated to processing audio, video, and sensor data [42]. These
accelerators, which sit outside the CPU pipeline, are referred
to as loosely-coupled accelerators (LCAs). They appear as
programmable I/O devices to the OS and communicate with
the CPU using memory-mapped registers and shared main
memory, sometimes connecting to the last-level cache [16]. To
maximize performance and accelerator-level parallelism [43],
applications can request a chain of accelerators running in
producer/consumer fashion [38]. The speedups these chains
provide, however, is limited by the fact that the accelerators
communicate via the main memory, creating contention at the
memory controller and the interconnect. This bottleneck will
worsen as SoCs become more heterogeneous and incorporate
accelerators for more elementary operations [15].

Techniques to reduce this contention include 1) forwarding
data from the producer to the consumer, i.e., moving data from
the producer’s local memory directly to the consumer’s, and 2)
colocation of consumer tasks with producer tasks, thus elimi-
nating all data movement. Examples of forwarding techniques
include insertion of intermediate buffers between producer and

consumer accelerators (VIP [38], [58]) or optimizing the cache
coherence protocol to proactively move data from producer’s
cache to the consumer’s cache directly (FUSION [28]). The
former requires design-time determination of communicating
accelerator pairs, while the latter requires that the accelerators
use caches and be part of the same coherence domain,
limiting their scalability and flexibility. More recent techniques
include ARM AXI-stream [4], [6], which allows multiple
producer/consumer buffers to be connected over a crossbar
switch, and Linux P2PDMA [31], [50], which enables direct
DMA transfers between PCIe devices without intermediate
main memory accesses. Unlike VIP and FUSION, they allow
for dynamic creation of producer/consumer pairs at run time
in order to move data between them. Efficient utilization of
such forwarding techniques, however, remains a challenge.

Existing systems expect software to explicitly utilize the
forwarding mechanism to move data between producer and
consumer [36], [38], [40], requiring knowledge of task mapping
to accelerators. Distributed management of tasks by each
accelerator, however, results in the accelerator’s inability to
utilize forwarding mechanisms due to the lack of knowledge of
task mappings to other accelerators. A centralized accelerator
manager has a global view of the system, allowing imple-
mentation of policies that opportunistically employ forwarding
mechanisms to improve accelerator utilization and application
performance. Unfortunately, the scheduling policies employed
thus far [15], [20] by these managers are not designed to
efficiently utilize forwarding hardware.

Scheduling policies typically prioritize tasks using arrival
time, deadline, or laxity. Such policies can be extended to
prioritize tasks that may forward data from a producer, similar
to FR-FCFS scheduling in memory systems [46], where row
buffer hits are prioritized over older tasks. However, this can
lead to unfairness where an application with more forwards
can starve others with fewer forwards. Therefore, we need a
scheduling policy that can opportunistically perform data
forwards while still providing fairness and quality of service
(QoS).

In this paper, we introduce RELIEF, an online accelerator
scheduling policy that has forwarding, QoS, and fairness as
first-class design principles. RELIEF prioritizes newly ready
tasks over existing ones since they can move data directly
from the producer’s memory using forwarding mechanisms.
RELIEF provides QoS in terms of meeting task deadlines and



fairness in terms of reducing variance in application slowdown
due to contention. It achieves both by tracking task laxity and
throttling priority elevations if they can cause missed deadlines.
These properties matter where tail-latency is important, such
as user-in-the-loop smartphone and client-server applications.
We evaluate RELIEF on a suite of vision and machine learning
benchmarks with strict latency constraints on a mobile platform.
Our key contributions are:

• An evaluation of data movement overheads for low-latency
accelerator chains used in deadline-constrained vision and
machine learning applications. We observe that some of
these applications spend as much as 75% of their execution
time on data movement.

• A novel scheduling policy, called RELIEF, that maximizes
utilization of existing forwarding hardware. RELIEF can
be easily integrated into existing hardware managers and
is agnostic of both the forwarding mechanism and the
specific definition of laxity, allowing for wider adoption.

• Extensive evaluation of RELIEF on a simulated mobile
SoC, encompassing performance improvements, imple-
mentation overheads, and sensitivity to microarchitectural
design decisions. RELIEF achieves up to 50% more
forwards compared to state-of-the-art (SOTA) policies,
resulting in 32% and 18% lower main memory traffic
and energy consumption, respectively. Simultaneously,
RELIEF improves QoS by meeting 14% more task
deadlines on average, and improves fairness by reducing
the worst-case deadline violation by 14%.

II. BACKGROUND

General-purpose processors and domain-specific accelerators
represent two ends of a spectrum of performance and flexibility,
with the latter trading off the former’s versatility for improved
performance. A middle ground between the two approaches
is to have a set of accelerators for elementary operations that
can be stitched together dynamically by each application to
serve its needs [15]. This is supported by the observation that
applications across domains are often composed of similar
kernels [22]. Such an approach eliminates redundancy of
hardware functional units along with greatly minimizing the
need for a specialized accelerator for each new application.

In this section, we present a suite of real-time smartphone
workloads that are widely used in modern devices and discuss
how they can be broken down into a set of elementary acceler-
ators. We quantify how memory-bound these accelerators are,
motivating the need for techniques to reduce data movement
costs. Next, we discuss the functionality of an accelerator
manager [15] and why they are well-equipped to improve
hardware utilization and provide QoS. Finally, we present
examples to explain how SOTA accelerator scheduling policies
fall short in utilizing forwarding hardware.

A. Modern smartphone workloads

We study two important classes of modern smartphone
workloads in this paper: vision and recurrent neural networks.
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Fig. 1: Kernels in different image processing and RNN applications

Both classes together represent a wide variety of compute-
intensive user-facing applications, making them suitable for
hardware acceleration.

Computer vision: Mobile visual computing applications
have exploded in popularity in recent years, ranging from
complex photography algorithms to AR/VR applications [19].
These applications often utilize several common image pro-
cessing kernels. One example is Canny edge detection [10],
which is used in face detection, either alone [35] or as
part of a neural network pipeline [54]. Another example
is Harris corner detection [24], which is used for feature
extraction in panorama stitching algorithms [30], especially in
VR applications [32]. Richardson-Lucy deconvolution [33], [45]
is an image deblurring algorithm that sharpens shaky camera
images. These three applications are commonly fed images
directly from an image signal processor (ISP) that captures
raw camera output and performs preprocessing operations like
demosaicing, color correction, and gamma correction [25].

Recurrent neural networks (RNNs): These are a class of
machine learning kernels used for time-series data, wherein
the inference at a time step can affect the inference at a later
time. This makes them particularly well-suited for speech



recognition [41] and language translation [55] applications in
modern phones. We evaluate two different RNN applications:
long short-term memory (LSTM) [26] and gated recurrent unit
(GRU) [13]. Given their widespread use, RNNs have been the
subject of prior work in low-latency accelerator design [21]
and accelerator scheduling [14], [59].

Details about these benchmarks, including their deadline
and input size, are listed in Table V. These applications can
be represented as directed acyclic graphs (DAGs) of seven
compute kernels, each of which can be implemented as a
separate hardware accelerator, as shown in Figure 1. The
description of each accelerator is listed in Table I. These
accelerators are ultra low-latency, spending significant time
moving data to/from memory. The data movement overhead
for each accelerator and each application is quantified in
Table II. For each application, the table compares the memory
time without forwarding hardware to an ideal scenario where
forwarding hardware is used whenever possible.

TABLE I: Elementary accelerators

Accelerator (SPAD
size in B) Description

canny-non-max
(262,144)

Suppress pixels that likely don’t belong to
edges.

convolution (196,708) Convolution with a max. filter size of 5x5.
edge-tracking
(98,432)

Mark and boost edge pixels based on a
threshold.

elem-matrix (262,144) Element-wise matrix operations including
add, mult, sqr, sqrt, atan2, tanh, and sigmoid.

grayscale (180,224) Convert RGB image to grayscale.
harris-non-max
(196,608)

Enhance maximal corner values in 3x3 grids
and suppress others.

ISP (115,204) Perform demosaicing, color correction, and
gamma correction on raw images.

The percentage of time spent on data movement by each
accelerator is primarily a function of its operational intensity.
Accelerators like convolution have abundant data reuse,
which leads to high operational intensity and a higher compute-
to-memory access time ratio. Meanwhile, elem-matrix has
little to no data reuse depending on the operation requested,
which causes its run time to be dominated by memory access
latency. The frequency of use of each accelerator type dictates
how much time each application spends on data movement.
GRU and LSTM, which exclusively use elem-matrix, spend
nearly 75% of their run time moving data between accelerators
while Deblur, which relies heavily on convolution, spends
a mere 3%. More importantly, we can see how efficient use of
forwarding hardware can significantly reduce data movement
overheads, especially for memory heavy RNN applications.

B. Accelerator manager

The use of dedicated hardware to manage the execution of
accelerators frees up the host cores from performing scheduling
and serving frequent interrupts from accelerators [15], espe-
cially for applications with thousands of low latency nodes.
1 The manager implements a runtime consisting of a host

1We use the terms node and task interchangeably.

TABLE II: Absolute time spent in compute vs data movement. These
are sum totals and do not account for computation/communication
overlap.

Accelerator Time (us)
Compute Memory

canny-non-max 443.02 30.45
convolution 1545.61 18.25

edge-tracking 324.73 13.56
elem-matrix 10.94 30.44

grayscale 10.26 15.23
harris-non-max 105.01 13.77

ISP 34.88 8.71

Application Time (us)
Compute Mem (no fwd) Mem (ideal)

canny 3539.37 237.74 173.29
deblur 15610.58 509.80 420.06

gru 1249.31 3343.72 1608.01
harris 6157.30 372.19 303.16
lstm 1470.02 3879.98 1797.77

interface, a scheduler, and driver functions for each accelerator
type.
Host interface: The CPU and the hardware manager commu-
nicate via shared main memory, with user programs submitting
tasks to the manager via either a system call or user-space
command queues [29], [44].
Scheduler: The submitted tasks are written into queues in
the main memory that can be read directly by the hardware
manager. The hardware manager performs sorted insertion of
these tasks into their respective accelerator’s ready queue using
a scheduling policy. These policies typically sort using arrival
time, deadline, or laxity.
Drivers: Tasks from ready queues are then launched onto ac-
celerators via driver functions. Drivers manipulate accelerators
or their DMA engine’s memory-mapped registers (MMRs) to
launch computations or load/store data, respectively.

Hardware managers can be realized as an accelerator
themselves or as a microcontroller, with the latter trading
off latency for ease of implementation and flexibility [20].

C. Limitations of SOTA scheduling policies

To illustrate how contemporary accelerator scheduling poli-
cies underutilize forwarding mechanisms, consider the two
DAGs presented in Figure 2a. The number of each accelerator
type available is indicated in the ”Accelerators” box. The color
inside each node represents the type of resource it requires.
The upper number is the execution time of the node while the
lower number is the deadline. The node deadlines have been
computed using critical-path method assuming both DAGs
arrive at time 0 and have deadlines of 16 and 15 time units,
respectively.

We compare the schedules generated by four SOTA policies
to an ideal schedule. Each of the policies presented below work
by sorting a per accelerator-type ready queue based on the
described criteria. As an accelerator of a given type becomes
available, the manager runtime pops the head of the queue for
execution.

1) First Come First Serve (FCFS): Simplest baseline policy
where incoming tasks are appended to the tail of the
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Fig. 2: Comparison of FCFS, GEDF-D, GEDF-N, LAX, and HetSched
to an ideal schedule. RELIEF achieves the ideal schedule. Brown and
green arrows represent forwarding and colocation, respectively. The
”Accelerators” box indicates the available number of each accelerator
type.

ready queue. FCFS represents the non-preemptive version
of round-robin scheduling used in GAM+ [15].

2) Global Earliest Deadline First (GEDF): A straightfor-
ward extension of the uniprocessor optimal Earliest
Deadline First (EDF) policy, where the tasks are sorted
based on increasing deadline. There are two variants
depending on how the task deadlines are computed:

a) GEDF-DAG (GEDF-D): Uses the deadline of the
DAG that the task belongs to as the task deadline.
This was previously used in VIP [38].

b) GEDF-Node (GEDF-N): Sets the task deadline by
performing critical-path analysis on the DAG. This
is amongst the most well-studied policies in real-
time literature [51], [56], [60].

3) Least Laxity First (LL): Another uniprocessor optimal

scheme [17], this policy works by sorting tasks in
increasing order of their laxity, which is defined below
in Equation 1. The deadline used here is set using the
critical-path method.

laxity = deadline − runtime − current time (1)

4) LAX [59]: A variant of LL that de-prioritizes tasks with
a negative laxity in favor of tasks with a non-negative
laxity to improve the number of tasks that meet their
deadline. We use this variant of LL for comparison in
the rest of the paper.

5) HetSched [3]: A least-laxity first policy that assigns task
deadlines using the following equation:

deadlinetask = SDR × deadlineDAG (2)

Here, sub-deadline ratio (SDR) quantifies the contribution
of a task to the execution time of the path it is on.

Figure 2 shows the possible schedules generated by each
of the policies above. The figures shows both cases, one
where data is forwarded from producer to consumer (brown
arrow), and another when computation is colocated, putting the
consumer computation on the same accelerator as the producer,
thereby eliminating all data movement (green arrow). For the
same number of forwards, the policy that generates more
colocations is therefore the better one. Note that intermediate
results are dispensable; we only care about the final output.
Looking at the ideal schedule in Figure 2b, we observe that it
not only meets deadlines, but also achieves 5 forwards and 2
colocations. The ideal policy is able to achieve these forwards
and colocations by running the consumer nodes immediately
after producer nodes, allowing for better utilization of the
aforementioned forwarding techniques. To the best of our
knowledge, this is an optimization that no current scheduling
policy performs. All other policies, barring GEDF-D, meet
the deadline but miss out on forwarding opportunities. FCFS
achieves 5 forwards, but performs no colocations. GEDF-D
achieves better forwarding with 5 forwards and 1 colocation
but misses deadlines. GEDF-N and HetSched produce the
same schedule where they meet deadlines but with sub-optimal
number of colocations. LAX has a different schedule than
GEDF-N/HetSched, but achieves the same number of forwards.
We, therefore, need a scheduling policy that exploits forwarding
opportunities while being deadline aware.

III. RELIEF: RELAXING LEAST-LAXITY TO ENABLE
FORWARDING

A. Scheduling algorithm

We now present RELIEF, RElaxing Least-laxIty to Enable
Forwarding, our proposed LL-based policy that attempts to
maximize the number of data forwards while delivering QoS.
The key idea behind the policy is to promote nodes whose
parents have just finished execution, ensuring that the children
can forward the data from the producer before it is overwritten.
To reduce unfairness and missed deadlines such promotions
might cause, RELIEF employs a laxity-driven approach that



throttles priority escalations when deadlines could potentially
be missed. By combining priority elevations with laxity-driven
throttling, RELIEF achieves the ideal schedule shown in
Figure 2b as well as the ideal data movement time in Table II.
We can see from the figure how RELIEF’s behavior deviates
from LAX, another LL-based policy, at timestep 7, where
RELIEF favors the second DAG’s newly ready child over
existing ready nodes with lower laxity and deadlines.

The RELIEF algorithm is presented in Algorithm 1. Newly
ready nodes whose parents have just finished execution are
called forwarding nodes, since they can potentially forward
data from the producer’s local memory. RELIEF schedules
these forwarding nodes immediately if there are resources
available, bypassing nodes with lower laxity if they can meet
their deadline under a LL scheme. If no priority escalation
is possible, the algorithm proceeds in a vanilla LL fashion.
We also experiment with LAX’s de-prioritization mechanism
that allows tasks with non-negative laxity to bypass those with
negative laxity in the ready queue (Section II-C). While this
mechanism can improve the number of tasks that complete
by their deadline (Section V-D), we show that it can lead to
unfairness in Section V-E.

Algorithm 1: RELIEF
1 Function RELIEF(finishing node):
2 for child ∈ finishing node.children do
3 child.cmplt parents += 1
4 if child.cmplt parents == child.num parents then
5 child.runtime = predict runtime(child)
6 child.laxity = child.deadline - child.runtime
7 index = find pos(fwd nodes[child.acc id], child)
8 fwd nodes[child.acc id].insert(index, child)

9 for each acc id do
10 max forwards = num idle accelerators[acc id]
11
12 while not fwd nodes[acc id].empty() do
13 node = fwd nodes[acc id].pop front()
14 index = find pos(ready queue[acc id], node)
15
16 if max forwards > 0 and

is feasible(ready queue[acc id], node, index)
then

17 ready queue[acc id].push front(node)
18 node.is fwd = true
19 max forwards -= 1
20 update fwd metadata(finishing node, child)

21 else
22 ready queue[acc id].insert(index, node)
23 node.is fwd = false

RELIEF works by creating a laxity-sorted list of candidate
forwarding nodes, called fwd nodes, from newly ready nodes
(Algorithm 1, lines 2-8). We store laxity as deadline - runtime,
subtracting the current time from it when manipulating the
ready queue (Algorithm 2, line 6). The candidate nodes are then
inserted into the ready queue at either the front (Algorithm 1,
line 17) or at the position dictated by their laxity (Algorithm 1,

line 22). A candidate node is escalated in priority only if 1)
the number of forwarding nodes in the ready queue for an
accelerator type is less than the number of idle instances of
that type (controlled by max_forwards), and 2) the function
is_feasible() returns true. The first condition ensures
that forwarding nodes are always the next to run, ensuring
their input data is still live in its producer’s local memory.
is_feasible() returns true if the priority escalation of
the candidate node is unlikely to cause deadline misses. Our
evaluation shows that predicting node runtime once at the
time of insertion into the ready queue has sufficient accuracy
(Section V-F).

The key to minimizing missed deadlines is
is_feasible()’s ability to predict which node promotions
might cause them. It takes three arguments: the ready queue,
the candidate forwarding node, and its position in the ready
queue based on laxity. In our implementation, presented in
Algorithm 2, we use a laxity-driven approach. For each node
in the ready queue that has a higher priority than the candidate
node, we ensure that its laxity is more than the candidate
node’s run time. That is, each of those nodes can tolerate
the additional latency of the candidate node without missing
their deadline. Since the queue is already sorted by laxity, we
start at the head of the queue and find the first node that is 1)
itself not a forwarding node, and 2) has positive laxity. If the
node thus found has laxity greater than the candidate node’s
runtime, then every following node does too and the candidate
node’s priority can be safely escalated. The first condition
here ensures that existing forwarding nodes do not prevent
escalation of other nodes, while the second is an optimization
that lets us bypass negative laxity nodes since they are not
expected to meet their deadlines even without the promotion.

Algorithm 2: is feasible
1 Function is_feasible(ready queue, fnode, index):
2 can forward = True;
3 for node ∈ ready queue do
4 if ready queue.index(node) == index then
5 break;

6 curr laxity = node.laxity - curTick();
7 if not node.is fwd and curr laxity > 0 then
8 can forward = curr laxity > fnode.runtime;
9 break;

10 if can forward then
11 for node ∈ ready queue do
12 if ready queue.index(node) == index then
13 break;

14 node.laxity -= fnode.runtime;

15 return can forward

B. Execution time prediction
Since RELIEF and its feasibility check are laxity-driven,

they require an estimate of each node’s execution time. We
accomplish that by predicting the compute time and memory
access time of each task separately.



Compute time prediction: The compute time of fixed-
function accelerators, such as the ones used in this study,
is largely a function of the input size and the requested
computation, owing to the data-independent nature of their
control flow [14]. The compute time of such devices can,
therefore, be profiled just once at either design time or system
boot-up since there will be very little variation. Our evaluation
shows that this scheme has an average error of just 0.03%
(Section V-F).

Memory time prediction: The memory access time predic-
tion works by predicting two values: the available bandwidth
and the amount of data movement. For the former, we experi-
ment with three different predictors based on prior work [18]:
Last value, Average, which computes the arithmetic mean of
the bandwidth of n previous tasks, and Exponentially Weighted
Moving Average (EWMA), that computes a weighted sum of
the most recently achieved bandwidth (bw) and historical data,
as shown below:

predn = α× bw + (1− α)× predn−1 (3)

The data movement predictor works by analyzing the graph
and observing node states. For predicting input data movement,
we need to predict if a node can be colocated with its parent,
since colocations eliminate producer/consumer data movement.
Given that the scheduler performs colocations by tracking the
previously executed node on an accelerator, only one child
can be colocated. We predict that the child with the earliest
deadline of a set of newly ready children will colocate with
the parent if they use the same accelerator type.

For predicting output data movement, we need to predict
the number of forwards. If all children can forward from the
node, then we will not need to write results back to the main
memory. This will be true if a) all the children map to a
unique accelerator, and b) all the children will be ready when
the node finishes. The former is a simple comparison between
the number of tasks mapping to an accelerator type and the
instances of that type, while the latter is achieved by ensuring
that the node is the latest finishing parent based on its deadline.

The accuracy and performance of bandwidth predictors
compared to a Max prediction scheme, where the maximum
available bandwidth is used, are presented in Section V-F. We
also compare the data movement predictor to a Max prediction
scheme where maximum data movement is assumed.

C. System architecture

We present the system architecture that we assume in
Figure 3. The accelerators are modeled to directly access
physical memory without address translation, like some existing
designs [39]. We propose exposing the entire scratchpad
memory in each accelerator to the rest of the system via a
non-coherent read-only port. The newly exposed scratchpad
memories are not mapped to user address space and access
is hidden behind device drivers, ensuring secure access. We
also use a discrete hardware manager that is coherent with the
CPUs (Section II-B), responsible for scheduling nodes onto

accelerators as well as for orchestration of data movement
between producers and consumers.
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Fig. 3: System architecture depicting the hardware manager and the
interconnect.

The CPUs, the hardware manager, and the accelerators
communicate via shared main memory and interrupts. The
CPU informs the hardware manager of new DAGs by writing
the root nodes into shared queues in the main memory. Each
node is a structure that represents a task for an accelerator, as
shown in Table III. The hardware manager parses each node
to push them onto ready queues, and launches them on the
accelerators via driver functions. The accelerators inform the
manager of the completion of each task by raising an interrupt.
When a node completes, the manager updates its status
field to inform the host CPU program of its completion and
pushes its children onto ready queues if their dependencies are
satisfied. The user program can learn of the completion of an
entire DAG by reading the status of leaf nodes.

TABLE III: DAG node data structure

struct node
uint32_t acc_id;
void *acc_inputs[NUM_INPUTS];
node *children[NUM_CHILDREN];
node *parents[NUM_INPUTS];
uint8_t status;
uint32_t deadline;
acc_state *producer_acc[NUM_INPUTS];
uint32_t producer_spm[NUM_INPUTS];
uint32_t completed_parents;

The node structure contains a few more synchronization
and bookkeeping fields that we hide for brevity. The size of
the structure depends on the number of parents and children
each node has, along with the pointer size. Assuming 32-bit
pointers, the base size of the structure with a single parent and
child is 72 bytes, with each additional parent and child adding
12 bytes and 4 bytes, respectively. The largest node we see in
our applications is 96 bytes. While we show the arrays to be
of a constant size, this implementation choice may be replaced
with dynamic structures.

1) Forwarding mechanism: Exposing accelerator private
scratchpad memories onto the system interconnect allows
consumer DMA engines to perform reads from producer
scratchpads without having to go to the main memory. Such



a modification should be fairly straightforward in modern
SoCs [52], exposing the scratchpad memories to the system
interconnect on the DMA plane. This is what we assume in
our evaluation. It also possible to leverage PCIe resizable-BAR
support [2], which enables exposure of multiple gigabytes of
private accelerator memory into the CPU address space, and
Linux P2PDMA interface [31], [50], which allows for direct
DMA transfers between PCIe devices.

2) Hardware manager: We now detail the data structures
maintained and runtime executed by the hardware manager
described in Section II-B. We chose a microcontroller-based im-
plementation for our work since it offers sufficient performance
(Section V-G).
Manager data structures: The hardware manager maintains
metadata for each accelerator to track its state and to manage
synchronization of data between producers and consumers.
Table IV presents the key metadata fields. In addition to
maintaining the address for accelerator and DMA engine MMRs
(acc_mmr and dma_mmr), the metadata also holds the address
of the scratchpad memory partitions (spm_addr), the state of
the accelerator (status, e.g., idle or running), and the number
of accelerators currently reading from each of its scratchpad
partitions (ongoing_reads). Scratchpad partitions are used
to implement multi-buffering.

TABLE IV: Accelerator metadata

struct acc state
uint8_t *acc_mmr;
uint8_t *dma_mmr;
uint8_t *spm_addr[NUM_SPM_PARTITIONS];
uint8_t status;
node *output[NUM_SPM_PARTITIONS];
uint32_t ongoing_reads[NUM_SPM_PARTITIONS];

The scratchpad partition addresses are physical addresses
used by consumer DMA engines to perform direct data transfers.
The field ongoing_reads is used to keep track of how
many consumers are reading from a scratchpad partition of
the accelerator to avoid overwriting the data. The manager
increments the count before a consumer starts transferring the
data to its local scratchpad memory and reduces the count after
it is done, thus ensuring that write-after-read dependencies are
respected when data is being forwarded.

The metadata size for each accelerator in our implementation,
assuming 32-bit pointers and a maximum of 3 scratchpad
partitions (NUM_SPM_PARTITIONS), is 32 bytes, totaling to
236 bytes for the 7 accelerators our system simulates.

Manager runtime: Alongside launching tasks onto accel-
erators, the manager runtime implements an interrupt service
routine (ISR) and the scheduler. The ISR is triggered every
time an accelerator finishes a job, where a job could be a DMA
operation or computation.

Once an accelerator finishes execution and the scheduler
is run, the field output[p] (Table IV) is set to point to
the node that just finished, denoting that partition p holds the
node’s output. The producer_acc and producer_spm
fields are also set in the child nodes to inform their drivers of
which producer accelerator and partition to read from. When

child nodes are launched, their driver checks if the data is still
present in the producer’s scratchpad and forwards it if it is.
In addition, if all the child nodes are not at the head of their
respective ready queue (i.e., not next in line for execution), or
the parent node does not have any children, the runtime calls
the producer driver to write the results back to main memory
immediately.

IV. EVALUATION METHODOLOGY

A. Benchmarks

We evaluate RELIEF against the four policies summarized
in Section II using three vision and two RNN applications.
The five applications, along with their input size, deadline, and
laxity (when run alone), are listed in Table V. We assume the
vision applications run at 60 frames per second (FPS) and thus
use a deadline of 16.6 ms. Deadline for RNN applications has
been borrowed from previous work [59]. Input sizes mirror
prior work as well [15], [59]. Richardson-Lucy deblur is an
iterative algorithm where higher iterations lead to better picture
quality. We use 5 iterations to have a representative input size
balanced with simulation time. Along similar lines, we assume
a sequence length of 8 for both LSTM and GRU.

TABLE V: Benchmarks

(Symbol) Benchmark Input / hid-
den layer size Deadline Laxity

(C) Canny edge detection [10] 128 x 128 16.6 ms 13.6 ms
(D) RL deblur [33], [45] 128 x128 16.6 ms 0.2 ms
(G) GRU [13] 128 7 ms 2.3 ms
(H) Harris corner detection [24] 128 x 128 16.6 ms 14 ms
(L) LSTM [26] 128 7 ms 3.6 ms

B. Platform

We use gem5-SALAM [47] for our evaluation, which
provides a cycle-accurate model for accelerators described
in high-level C. The simulator consumes the description of
an accelerator in LLVM [1] intermediate representation (IR)
and a configuration file and provides statistics like execution
time and energy consumption. These accelerators are then
mapped into the simulated platform’s physical address space,
enabling access via memory-mapped registers. The simulated
configuration, listed in Table VI, models a typical mobile
device [38]. We model the hardware manager using an ARM
Cortex-A7 based microcontroller running bare-metal C code.
Cortex-A7 has an area and power overhead of 0.45mm2 and
<100mW [5], which can be reduced further by stripping
the vector unit. The simulated platform models end-to-end
execution of applications, from inserting the tasks into ready
queues till the completion of each requested application. This
includes interrupt handling, scheduling, driver functionality,
DMA transfers, and accelerator execution. In addition to
the bus-based interconnect between the accelerators listed in
Table VI, we evaluate RELIEF’s performance with a crossbar
switch in Section V-H. The two topologies represent two ends
of the interconnect cost/performance spectrum.

Our evaluation uses seven image processing accelerators, one
each for the kernels shown in Figure 1. Each accelerator was



TABLE VI: Simulation setup

Hardware
manager

ARM Cortex-A7 based 1.6 GHz single-core in-
order CPU
32 KB 2-way L1-I; 32 KB 4-way L1-D; 64 B
cache line size

Main memory
LPDDR5-6400; 1 16-bit channel; 1 rank; BG
mode; tCK = 1.25ns; burst length = 32
Peak bandwidth = 12.8 GB/s

Interconnect Full-duplex bus; width = 16 B
Peak bandwidth = 14.9 GB/s

designed in isolation by determining the energy×delay2 (ED2)
product for the execution of a single task on the accelerator,
while varying the configuration in terms of the number of
functional units and memory ports. The configuration with the
minimum ED2 was chosen for the design, similar to previous
work [47], [53]. In practice, we expect accelerators to work on
the same input size to allow for easy chaining and sharing of
data by commonly used applications. Our accelerators, clocked
at 1 GHz, thus, have enough scratchpad memory to work on
128x128 inputs along with double buffered output to avoid
blocking on consumer accelerator reads. The precise scratchpad
memory sizes are listed in Table I. For accelerators with
differing input sizes, the software runtime or the hardware
manager can break down tasks into smaller chunks, similar to
accelerator composition in GAM+ [15].

C. System load

Combinations of the applications in Table V are often
seen in real-world scenarios, e.g., Canny+LSTM is used
for lane detection in self driving cars [57]. Enumerating all
combinations of these applications, thus, helps us cover all
their existing and potential future use cases. We experiment
with four levels of contention to see how each of the policies
scale. Low contention is just a single application, medium
contention is all combinations of size 2, while high contention
is all combinations of size 3. Increasing contention represents
reduced ability to meet deadlines, with combinations larger
than 3 meeting very few deadlines and thus not evaluated. In
each of these scenarios, each application is instantiated once
and the simulation ends when the last application finishes
execution. The fourth level of contention, called continuous
contention, is a modification of high contention where each
of the three applications are run in a continuous loop to
ensure each application experiences contention throughout its
execution. We limit the execution time of each simulation to
50ms and report results for finished tasks. Each application is
represented with a symbol in the following figures, as listed
in Table V.

V. RESULTS

A. Data forwards

Our primary design goal with RELIEF is producing more
data forwards than SOTA policies. We quantify this increase
in Figure 4.

Observation 1: SOTA policies under-utilize forwarding
mechanisms. In contrast, RELIEF consistently achieves
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(d) Continuous contention

Fig. 4: Percent of total forwards and colocations, computed as the
ratio of the total number of forwards/colocations to the total number
of edges in the mix.

>65% of all possible forwards, on average. This is clear
from Figure 4, which shows the percentage of total data
forwards and colocations, computed as the ratio of number
of forwards/colocations to the total number of edges in
the mix. We can see how SOTA policies’ obliviousness to
data forwarding mechanisms leads to their under-utilization,
achieving as little as 8% of all forwards possible. In contrast,
RELIEF improves over HetSched, the leading SOTA policy,
by nearly 1.2x on average under continuous contention.

We observe two trends across all three four of contention in
Figure 4: 1) RNN applications (GRU and LSTM) are the biggest
contributors to colocations, and 2) application mixes with more
RNN applications achieve better forwarding with RELIEF than
others. The first observation is unsurprising given that all RNN
tasks map onto a single resource. For the second observation,
we attribute the gains with RNN applications to the fact that
they contain long, linear chains (up to 9 nodes) that have the
same structure and node deadlines. Having the same node
deadlines means that deadline-aware policies schedule each



of those chains in a round-robin fashion, thus forfeiting any
forwarding opportunities. FCFS has a similar problem of being
locality oblivious. HetSched is able to achieve significantly
more forwards than other baseline policies. These gains stem
primarily from HetSched’s ability to prioritize GRU’s critical
path, which happens to contain most of its forwards.

B. Data movement

To understand each policy’s data movement behavior, Fig-
ure 5 plots the percentage of data transfers (in bytes) that
materialize as main memory accesses, scratchpad-to-scratchpad
transfers, and colocations.
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Fig. 5: Breakdown of data movement into main memory traffic (lower
bars), SPAD-to-SPAD traffic (upper bars), and colocations (empty
space). Data is normalized to total data movement when all loads and
stores go to main memory.

Observation 2: RELIEF reduces main memory traffic
by up to 32% compared to HetSched, under each level
of contention. The average reduction compared to HetSched
rests at 10%, 14%, 16%, and 16%, for low, medium, high,
and continuous contention, respectively. This is a key result
and highlights how simple changes to the scheduler can yield
significant reductions in memory traffic.

The percentage of forwards that materialize as colocations
in a mix is a function of its application composition. As
explained before and evident from Figure 5a, all GRU and
LSTM forwards are colocations since these applications map to
a single accelerator. In contrast, the vision applications are more
diverse in their resource needs and exhibit a greater degree
of scratchpad-to-scratchpad data movement. The behavior of
single applications impacts the behavior of entire mixes. Mixes
CD, CH, and DH (medium contention), for instance, have
fewer colocations than other mixes. The same is true for mix
CDH (high/continuous contention).

The reduction in data movement traffic reduces energy
consumption for both the main memory and scratchpad
memories. We quantify this reduction for the high contention
scenario in Figure 6.
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Fig. 6: Total main memory and scratchpad memories’ energy
consumption under high contention using gem5-SALAM’s energy
models.

Observation 3: RELIEF reduces main memory and
scratchpad memory energy consumption by up to 18%
and 8%, respectively, compared to HetSched under high
contention. The average main memory and scratchpad energy
reduction compared to HetSched is 7% and 4%, respectively.
Forwards reduce main memory traffic while colocations elimi-
nate both main memory and scratchpad memory traffic. While
forwards cause an increase in scratchpad activity, colocations
more than make up for the increase. RELIEF has the same
scratchpad energy consumption as LAX for CDH, for instance,
but reduces it by 24% for CGL.

C. Accelerator utilization

Figure 7 shows accelerator utilization (or occupancy), defined
as the sum, across all accelerators, of the fraction of total
execution time for which each accelerator was busy. Accelerator
occupancy provides a measure of degree of parallelism in each
scenario. Note that while the numerator is relatively constant
under the low, medium, and high contention scenarios, the
denominator, which is total execution time, is impacted both
by the degree of computational parallelism and by the data
movement cost resulting from the use of each policy. For
the continuous contention scenario, the denominator remains
constant, while the numerator is impacted by the number and
type of nodes executed, the data movement cost, and the degree
of computational parallelism, all of which vary by policy.

Observation 4: RELIEF improves accelerator utilization
by up to 41%, compared to LAX under high contention,
with an average improvement of 4%. HetSched, in turn,
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(d) Continuous contention

Fig. 7: Accelerator occupancy is defined as ratio of the sum of total of
all accelerators’ compute time to the the end-to-end system execution
time, measured from the initiation of all applications to the completion
of the last application. Higher is better.

results in best case and average improvements of 41%
and 5% relative to RELIEF, respectively. RELIEF’s im-
provements over LAX are a result of increased number of
forwards, resulting in lower execution time. In its attempt to
increase forwards, RELIEF can sometimes hinder the progress
of tasks whose children map to different accelerators, resulting
in a lower degree of parallelism. This is especially evident
in mixes CGL and GHL under continuous contention, where
GRU and LSTM tasks, all of which map to elem-matrix,
get promoted frequently, limiting the time they execute in
parallel with the vision tasks, which utilize a variety of
accelerators. HetSched and LAX’s gains over RELIEF for
these application mixes are primarily attributed to RELIEF’s
lower accelerator-level parallelism and increased scheduling
latency (Section V-G).

While RELIEF’s promotions reduce the degree of parallelism
on average relative to HetSched, they do not cause unfairness. In
fact, it is a fairer policy when compared to LAX and HetSched,
as we will see in Section V-E.

D. Node deadlines met

RELIEF integrates a feasibility check (Section III) that makes
a best-effort to minimize missed deadlines. To evaluate its
efficacy, we compute the percentage of node deadlines met in
each application mix and present the results in Figure 8.

Observation 5: RELIEF meets up to 70% more node
deadlines compared to HetSched, under high contention,
with an average improvement of 14%. More importantly,
RELIEF rarely reduces the number of deadlines met compared
to SOTA. This highlights the effectiveness of the feasibility
check in throttling priority elevations to prevent deadline
violations.
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Fig. 8: Percent of node deadlines met

The only instance where RELIEF performs worse than
existing policies is in the high contention mix CDH. We observe
that GEDF-N and RELIEF prioritize Deblur nodes over Canny
and Harris nodes since the former have a lower deadline and
laxity. This causes nearly all of the Canny and Harris nodes to
miss their deadlines. Furthermore, not all Deblur nodes meet
their deadlines either because of high contention. HetSched has
a similar story of prioritizing Deblur due to its longer critical
path. LAX’s ability to de-prioritize applications with negative



TABLE VII: Number of finished DAGs in each application mix under continuous contention.

Policy C D G C D H C D L C G H C G L C H L D G H D G L D H L G H L
FCFS 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4
GEDF-D 5 1 12 3 1 2 3 2 9 5 11 4 2 4 4 3 3 9 1 11 3 1 4 4 1 3 9 4 2 4
GEDF-N 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 2 4
LAX 5 0 11 5 0 5 3 0 8 4 11 4 12 3 4 3 3 8 0 11 4 3 3 4 0 3 8 3 7 4
RELIEF-LAX 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4
LL 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 1 4
HetSched 6 1 14 2 1 2 6 1 10 6 14 5 6 7 5 6 5 10 1 14 3 3 7 5 1 3 10 7 3 5
RELIEF 5 1 14 2 1 2 5 2 12 5 14 5 2 6 6 5 4 12 1 14 3 2 6 6 1 3 12 6 2 6

laxity allows it to de-prioritize Deblur, allowing all Canny and
Harris nodes to make progress. FCFS does not suffer from
this problem either because it does not prioritize DAGs and
nodes. GEDF-D has the same schedule as FCFS given that all
the DAGs in this mix have the same deadline. RELIEF also
performs worse than HetSched in DGL, but the latter achieves
the gains by unfairly slowing down LSTM. We will explore
fairness in more detail in Section V-E.

Continuous contention has a different setup compared to
the other three scenarios, as described in Section IV-C. Under
continuous contention, each mix executes a different number
and type of nodes under different policies for a fixed period of
time. In the other three scenarios, each application in a given
application mix runs to completion and executes exactly once,
so the number of nodes executed is constant across policies
with the execution time depending on the policy’s scheduling
decisions. This different simulation setup results in what looks
like anomalous behavior of a higher percentage of deadlines
met under continuous contention compared to high contention
(e.g., CDG), but in reality they cannot be directly compared.
This hints at a tradeoff between deadlines met and fairness
that we explore in the next section.

E. Quality-of-Service and Fairness

An important aspect of RELIEF’s design is fairness: in-
creased forwards for one application should not come at the
cost of excessive slowdown for others. Figure 9a shows a box
plot of application slowdown in each mix under high contention.
The figure also shows the results for LL and RELIEF-LAX,
a variant of RELIEF that integrates LAX’s de-prioritization
mechanism (Section II-C). Figure 9b, meanwhile, plots the
percent of DAG deadlines met under high contention.

Figure 9a shows how RELIEF reduces maximum slowdown
and variance by up to 17% and 93%, respectively, compared to
HetSched. The latter meets the same or more DAG deadlines
across the board, however (Figure 9b). The two results highlight
a key tradeoff: HetSched meets more DAG deadlines by
unfairly slowing down one application over another, as evident
from its wider slowdown spread, while RELIEF attempts
to distribute slowdowns and allows each DAG to make
progress commensurate with its deadline. This tradeoff is made
even more evident under continuous contention, as shown in
Figures 10a and 10b.

Observation 6: RELIEF improves fairness, reducing
worst-case deadline violation and variance by up to 14%
and 98%, respectively, compared to HetSched under
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(a) Slowdown is defined as the ratio of an application’s runtime to
its deadline. The box edges and the median represent the slowdown
for each of the three applications.
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Fig. 9: Slowdown (a) and DAG deadlines met (b) under high
contention.
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(a) Slowdown is defined as the ratio of an application’s runtime to
its deadline. The box edges and the median represent the geometric
mean slowdown for each of the three applications. Infinite values
represent starved applications.
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Fig. 10: Slowdown (a) and DAG deadlines met (b) under continuous
contention.



TABLE VIII: Accuracy of compute time and data movement predictors, along with the accuracy and performance of memory bandwidth
predictors. Negative error values represent underestimation of true value while positive error values represent overestimation. The geometric
mean uses absolute error values.

Mix Compute Memory DM Memory BW error (%) Forwards Node deadlines met
error (%) error (%) Max Last Average EWMA Max Last Average EWMA Max Last Average EWMA

CDG 0.06 -0.95 -56.33 5.85 -1.24 1.1 139 138 138 139 136 136 136 136
CDH 0 -8.06 -59.03 -19.42 -3.95 -4.68 46 46 47 47 22 22 22 22
CDL -0.05 -0.88 -56.47 5.19 -1.27 2.02 155 155 155 155 160 160 160 160
CGH 0.1 -1.01 -55.7 7.13 -1.18 2.19 130 130 130 130 150 150 150 150
CGL 0.02 0.59 -55.39 11.23 0.42 4.37 230 230 232 231 257 255 254 252
CHL 0.05 -0.93 -56.63 5.93 -0.64 2.79 143 143 143 143 174 174 174 174
DGH 0.03 -3.14 -56.94 4.26 -1.33 0.96 142 142 142 142 142 142 142 142
DGL -0.02 -2.15 -55.5 8.95 -0.07 2.67 244 245 244 245 240 242 239 242
DHL 0 -3.33 -56.7 3.65 -1.36 1.31 156 156 157 157 166 166 166 166
GHL -0.05 -0.57 -55.41 11.13 0.09 3.06 237 238 239 238 263 261 260 258

Gmean 0.03 1.47 56.4 7.31 0.68 2.22 - - - - - - - -

continuous contention. HetSched is able to meet more DAG
deadlines (Figure 10b) and improve accelerator utilization
(Section V-C) by unfairly favoring some applications over
others. For instance, HetSched meets 10 DAG deadlines in
DGL while RELIEF meets 0, but it does so by slowing down
one application (LSTM) by 22%. In contrast, every application
suffers a slowdown of <7% under RELIEF , accompanied by
a 98% reduction in variance.

We also see how LAX’s de-prioritization mechanism causes
significant unfairness in mixes CGL, DGL, and GHL. In all
three cases, the RNN applications start missing deadlines
early on due to contention and are de-prioritized by LAX and
RELIEF-LAX in favor of the vision applications, causing sig-
nificant unfairness. This is especially troublesome considering
that they have lower deadlines compared to vision applications
(Table V). In contrast, RELIEF allows the RNN applications
to progress alongside the vision applications, ensuring more
deadlines are met while reducing unfairness.

LAX also has a starvation problem, as is made evident
from Figure 10a and Table VII. The table lists the number
of completed DAG iterations for each application in each
continuous contention mix. We see how Deblur is starved in
every mix it is in except DGL. Deblur is extremely sensitive
to queuing delays given its laxity of just 0.2ms (Table V).
Combined with its linear task graph, this means that if even a
single Deblur node is delayed by more than 0.2ms, the node’s
laxity will drop below 0 and it will get deprioritized by LAX.
This is precisely what happens when Deblur contends with
other vision applications for the convolution accelerator:
if any node is launched on the convolution accelerator
while a Deblur node is waiting, the latter will be stalled for
at least 1.5ms (Table II), causing starvation. This stalls any
progress for Deblur until the system has no other node to
offload to the convolution accelerator. DGL does not suffer
from this problem because GRU and LSTM do not use the
convolution accelerator. FCFS also has 0 finished Deblur
iterations in CDH, but our experiments show that it is not
starved; rather it is making slow progress.

F. Prediction accuracy

The feasibility check presented in Section III utilizes a
predictor to estimate compute and memory access times for

accelerators. Table VIII presents the error in the compute
time, the data movement, and the different memory bandwidth
predictors under high contention, along with the latter’s impact
on the number of forwards and node deadlines met. We
empirically chose n=15 for Average and α = 0.25 for EWMA
for the best accuracy.

Observation 7: Compute time prediction has a maximum
error of just 0.03%. This validates prior observations that
compute time can be defined as a function of input size and
requested operation for fixed function accelerators [14].

Data movement prediction also works well, with an average
error of 1.35%. Memory bandwidth predictors, meanwhile,
exhibit a range of accuracies, with Average performing the
best both in terms of mean (0.68%) and maximum (3.95%)
error. Their accuracy has little to no impact on performance,
however. We can see from Table VIII how each policy achieves
essentially the same number of forwards and deadlines met.

To understand the incremental impact of data movement and
memory bandwidth predictors, Figure 11 plots the performance
impact of the two predictors in isolation and combined,
normalized to having Max predictor for both. The bandwidth
predictor here is Average. We can see how little impact the
accuracy of the predictor has on RELIEF’s ability to meet
deadlines. Their impact on forwards (not shown) is similar.
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Fig. 11: Impact of memory predictors on missed deadlines under high
contention.

Observation 8: RELIEF does not benefit from dynamic
memory time prediction. Each application has several for-
warding chains, which are contiguous sequence of forwarding
producers/consumers. The laxity calculation based on the
memory time prediction decides how these chains get broken
up into sub-chains and interleaved. We notice that the number
of sub-chains produced by each predictor does not differ



significantly, which is why they all achieve similar overall
performance. Given this observation, we have used the baseline
Max predictors for all our evaluations since they offer the same
performance for negligible overhead.

G. Scheduler execution time

The execution time of a scheduling policy is an important
factor in choosing one, since a better schedule may not offset
the overhead of preparing the schedule itself. Figure 12 plots
the average and tail latency of pushing a task into the ready
queue for each policy on a Cortex-A7 based microcontroller.
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Fig. 12: Average (bars) and tail (lines) latency of the scheduler with
different policies on a Cortex-A7 based microcontroller, under high
contention.

Observation 9: RELIEF has higher overhead than
existing policies, but is easily overlapped with accelerator
execution. Looking at Figure 12 and Table II, we can see that
RELIEF’s modest scheduling overhead can be easily overlapped
with computation, minimizing its contribution to the critical
path.

H. Impact of interconnect topology

A crossbar is a high-throughput switch allowing up to n×m
concurrent transactions for n requesters and m responders. This
should benefit RELIEF since it permits concurrent transactions
between independent producer/consumer pairs. Figure 13
shows RELIEF’s sensitivity to the interconnect in terms of
interconnect occupancy and the total execution time, under
high contention.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

10

20

30

40

50

60

70

In
te

rc
on

ne
ct

 o
cc

up
an

cy
 (%

)

Occupancy: LAX
Exec. time: LAX

RELIEF-Bus
RELIEF-Bus

RELIEF-XBar
RELIEF-XBar

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n 
tim

e 
(n

or
m

. t
o 

LA
X)

Fig. 13: RELIEF’s sensitivity to system interconnect under high
contention. Interconnect occupancy is defined as the percentage of
cycles for which the interconnect had at least one transaction going
through.

Observation 10: RELIEF reduces interconnect occupancy
by up to 49% compared to LAX, with an average reduction
of 33%. It does not, however, benefit from high-performance
interconnects. RELIEF’s low interconnect occupancy is a
result of its reduction in data movement (Section V-B) as well
as a lack of accelerator-level parallelism (Section V-C). This
indicates that these applications are not interconnect-bound,
an observation further supported by the fact that the average
queuing delay for the bus is less than a cycle (not shown). We
expect applications with more varied resource needs and larger
input sizes to benefit more from complex interconnects.

VI. RELATED WORK

GPU Scheduling: Prior work in GPU scheduling has looked
at co-scheduling and distributing work across CPUs and GPUs
to reduce synchronization and data-movement overhead [23],
[34]. PTask [48] optimizes for fairness and tries to reduce data
movement by scheduling child tasks onto the same device as
the producer when possible. Cilk [9] also implements a child-
first scheduling policy that improves locality but it optimizes
primarily for improved hardware utilization. While being child-
first, both PTask and Cilk are deadline blind, rendering them
unsuitable for real-time applications. Zahaf et al. [60] use an
EDF policy to determine which device each node should be
mapped to (e.g., GPU, DSP) such that all DAG deadlines are
met. Their work can be extended by optimizing for better
colocation using RELIEF.

Baymax [12] and Prophet [11] use online statistical and
machine learning approaches, respectively, to predict whether
an accelerator can be shared by user-facing applications and
throughput-oriented applications at the same time, without
violating the former’s QoS requirements. RELIEF can be
extended with Baymax and Prophet to efficiently utilize multi-
tenant accelerators like GPUs.

Menychtas et al. [37] present a fair queuing-based scheme
where the OS samples each process’ use of accelerators in
fixed time quanta and throttles their access to provide fairness.

Accelerator scheduling: Gao et al. [21] batch identical task
DAGs across multiple user-facing RNN applications together
for simultaneous execution on a GPU, thereby improving
GPU utilization and reducing inference latency. PREMA [14]
utilizes a token-based scheduling policy for preemptive neural
processing units (NPUs) that distributes tokens to each task
based on its priority and the slowdown experienced due to
contention, balancing fairness with QoS. While both policies
are QoS-aware, neither of them optimize for data movement
across multiple accelerators.

GAM+ [15] is a hardware manager that decomposes algo-
rithms into accelerator tasks and schedules them onto physical
accelerator instances using a preemptive round-robin policy.
The hardware manager we used is based on GAM+. VIP [38]
is an accelerator virtualization framework that uses a hardware
scheduler at each accelerator to arbitrate among different
applications’ tasks. The authors use an EDF scheme where the
FPS of the application serves as the deadline. Yeh et al. [59]
propose exposure of performance counters in GPUs that drives



LAX, a non-preemptive least laxity-based scheduling policy.
HetSched [3] is another laxity-driven scheduling policy for
autonomous vehicles that takes task criticality and placement
into account. The scheduling policies underlying these systems
are used in our comparative evaluation in Section V.

Real-time scheduling: Optimal scheduling using a job-level
fixed priority algorithm is provably impossible [27], unless
task release times, execution times, and deadlines are known a
priori [17]. Baruah presented optimal but NP-complete integer-
linear programming formulations [7] along with approximate
linear-programming relaxations [8] for scheduling real-time
tasks on heterogeneous multiprocessors. Previous work also
exists on providing tighter bounds on the response time of the
system under both preemptive and non-preemptive variants of
GEDF [51], [56]. These mathematically sound formulations
provide strong performance guarantees but tend to be infeasible
in an online setting. RELIEF’s goal is to meet application-
specified deadlines while minimizing data movement using a
fast, online heuristic approach.

3DSF [49] is a hierarchical scheduler for cloud clusters
that integrates three schedulers. The top layer avoids missed
deadlines by using a least-laxity (LL) scheme to prioritize
deadline constraint jobs over regular ones when necessary, the
middle layer minimizes data movement by queuing tasks on
servers that have the most inputs available locally, and the
bottom layer allocates server resources to each running job
proportional to its requirements. Although locality aware, 3DSF
has multiple optimization targets that come with execution time
overheads untenable for micro-second latency tasks.

VII. SUMMARY AND DISCUSSION

In this paper, we present RELIEF (RElaxing Least-laxIty to
Enable Forwarding), an online least laxity-based (LL-based)
scheduling policy that exploits laxity to improve forwarding
hardware utilization by leveraging one application’s laxity
to reduce data movement in another application. RELIEF
increases direct data transfers between producer/consumer
accelerators by up to 50% compared to SOTA, lowering main
memory traffic and energy consumption by up to 32% and
18%, respectively. Simultaneously, RELIEF improves QoS by
meeting 14% more task deadlines on average, and improves
fairness by reducing the worst-case deadline violation by 14%.
RELIEF integrates into existing architectures with hardware
forwarding mechanisms and a hardware manager, requiring
minimal software changes.

While we have demonstrated our ideas over LL-based
scheduling, the techniques can be applied over other laxity-
based policies such as HetSched as well. LL and HetSched
differ in the manner in which laxity is distributed across nodes
in a DAG, resulting in scheduling differences in the baseline
policies. LL does not distribute its laxity, which means that
each node has laxity equal to the current DAG laxity. HetSched,
meanwhile, attempts to distribute the laxity among nodes based
on their contribution to the critical-path execution time. With
LL as a baseline policy, RELIEF has all of DAG’s laxity at
its disposal that it can choose to exploit whenever it sees fit.

With HetSched as a baseline, however, the DAG’s laxity is
distributed across the nodes, limiting the number of promotions
a node will allow. We are currently investigating the impact of
using HetSched’s laxity calculation in RELIEF. Our preliminary
results indicate that such a combination continues to offer
significant data movement cost savings, potentially increasing
both forwards and deadlines met. We observe, however, that
the choice of laxity distribution presents a tradeoff between
QoS and fairness.
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APPENDIX

A. Abstract

This artifact appendix describes how to run RELIEF and
other accelerator scheduling policies described in this paper
using gem5. The artifact includes the implementation of all
the policies in gem5 and our vision and RNN benchmark suite,
along with pre-built binaries for the latter. It also includes
optional instructions to rebuild the benchmark binaries and
hardware models.

B. Artifact check-list (meta-information)
• Algorithm: RELIEF, a least-laxity based scheduling policy.
• Program: gem5 (C++ and Python code).
• Compilation: GCC, SCons.
• Binary: Vision and RNN binaries, compiled using GNU Arm

Embedded toolchain v8.3.

• Run-time environment: Any modern Linux distribution.
• Hardware: X86-based CPU with 10 cores and 32GB main

memory.
• Metrics: Data forwards, data movement, accelerator occupancy,

slowdown, node deadlines met, DAG deadlines met.
• Output: gem5 statistics and execution trace.
• How much disk space required (approximately)?: 17 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2-3 hours.
• How much time is needed to complete experiments (approx-

imately)?: 8-10 hours.
• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10237117

C. Description

1) How to access: The code is available on GitHub2 and
Zenodo3.

2) Hardware dependencies: Recent X86 based CPU with at
least 10 cores and 32GB main memory. The simulations take
multiple hours to run, and we recommend at least 60 cores
and 150 GB of main memory to run all of them in parallel.

3) Software dependencies:

• Linux OS with a recent version of GCC.
• Python 2 with pip installed.
• (Optional) GNU Arm Embedded toolchain v8.3
• (Optional) LLVM 3.8

D. Installation

The steps below detail the installation for gem5 and asso-
ciated Python dependencies. There is a step for building the
benchmarks that requires GNU Arm Embedded toolchain v8.3.
Our distribution already includes benchmark binaries, so this
step is optional.

1) Navigate to the project root directory and install Python
dependencies by running:

pip install -r requirements.txt
2) Build gem5 by following the instructions in

README.md.
3) Set M5_PATH environment variable:

export M5_PATH=`pwd`
4) (Optional) Build the benchmarks by navigating to

$M5_PATH/benchmarks/scheduler/sw and run-
ning the following command. Note that this requires the
installation of GNU Arm Embedded toolchain, described
in README.md.

./create_binary_combinations_3.sh
The binaries will be put in the directory bin_comb_3.

5) (Optional) Compile the accelerator descrip-
tions into LLVM IR by navigating to
$M5_PATH/benchmarks/scheduler/hw
and running make. Note that this requires the installation
of LLVM 3.8, described in README.md.

2https://github.com/Sacusa/gem5-SALAM/tree/HPCA 2024
3https://doi.org/10.5281/zenodo.10237117
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E. Experiment workflow

Navigate to the project root directory and launch high
contention scenario simulations by running:

./run_combinations_3.sh `nproc`
The simulations need at least 10 cores to finish in a reasonable
period. The results will be saved in the directory
$M5_PATH/BM_ARM_OUT/comb_3.

F. Evaluation and expected results

We provide five scripts in
$M5_PATH/BM_ARM_OUT/scripts/comb_3:
plot_forwards.py, plot_data_movement.py,
plot_accelerator_occupancy.py,
plot_slowdown.py, and plot_deadlines_met.py,
that reproduce Figures 4c, 5c, 7c, 9a, and 8c, respectively. The
last script also reproduces 9b. Each script can be run as:

python <script>
The scripts use matplotlib to produce the
figures in PDF format, which are stored in
$M5_PATH/BM_ARM_OUT/scripts/plots.

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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