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Abstract—Processing in-memory (PIM) has emerged as a
promising approach to address the increasingly memory bound
nature of modern applications like machine learning and ge-
nomics. While PIM-enabled memories offer significant per-
formance and energy improvements over host-side execution,
integration of such memories into existing systems remains an
open challenge. In particular, naively replacing regular memory
with a PIM-enabled one in a conventional processor could be
detrimental to its performance. PIM applications are optimized to
saturate the memory subsystem to maximize speedup. However,
since modern processors, including CPUs and GPUs, support
multi-tenancy to improve utilization, such saturation can lead to
extreme unfairness and denial of service to other applications.

In this paper, we characterize the performance of a PIM-
enabled GPU system when co-executing regular GPU kernels
with a PIM kernel. Our characterization shows that PIM kernels
can easily overwhelm the interconnect and the memory controller
and severely degrade the performance of the non-PIM kernel,
hurting system-level fairness and throughput metrics. Based on
this characterization, we propose changes to the interconnect that
ease the flow of requests from the processor to the memory con-
troller. At the memory controller, we propose a new scheduling
policy, called F3FS, that optimizes for fairness and throughput.
While F3FS benefits from changes to the interconnect, we show
that it performs comparably to existing policies without them.
We evaluate and compare the proposed changes to state-of-the-
art memory controller scheduling policies under both competitive
(two kernels from different applications) and collaborative (two
kernels from same application) scenarios.

Index Terms—General-purpose graphics processing unit, in-
terconnect, memory access scheduling, processing in-memory.

I. INTRODUCTION

Modern applications, ranging from consumer mobile appli-
cations [9] to large server workloads [17], [65], are becoming
increasingly memory bound. While newer memory technolo-
gies like HBM [28], [33], GDDR6 [29], and HMC [20],
[27] reduce the memory bottleneck by offering wider links,
increased parallelism, and improved scalability [11], they still
struggle to close the gap between processor and memory
performance, the so-called ”memory wall” [23], [67].

Processing in-memory (PIM) [1], [18], [19], [22], [42], [45],
[63] is a paradigm shift in how we design our computers,
dictating that compute be moved closer to data instead of the
other way around. PIM architectures place compute units close
to/inside main memory cells, minimizing data movement costs
and achieving wide data parallelism. A common mechanism
to trigger computation on these compute units is by submitting

PIM requests, requests that resemble regular memory requests
(henceforth called MEM requests) but perform computation
in-place rather than moving data to/from the host processor.
To handle this heterogeneity in request types, the memory
controller needs to switch between MEM mode and PIM mode
to service requests of each type. This switching adds a new
dimension to memory controller scheduling that is distinct
from traditional architectures.
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Fig. 1: PIM-enabled GPU architecture. Each HBM layer
contains eight functional units (FUs) that are shared by two
banks each (fewer shown in figure for readability).

Though PIM-enabled memories can be paired with many
host processors, GPUs have emerged as a particularly attrac-
tive fit given their highly data-parallel architecture [1], [22],
[54]. Figure 1 shows an example PIM-enabled GPU architec-
ture. Modern GPUs often utilize techniques like streams [4],
[21], [50], multi-process service (MPS) [52], and multi-
instance GPU (MIG) [51] to execute multiple kernels con-
currently, allowing for improved utilization of the GPU’s
resources. These techniques enable simultaneous use of both
GPU cores and PIM functional units (FUs) by allowing for co-
execution of traditional GPU kernels with kernels that submit
PIM requests to the main memory for computation [1], [54]
(henceforth referred to as GPU and PIM kernels, respectively),
improving both resource utilization and application perfor-
mance. Such simultaneous use can be either collaborative,
where both GPU and PIM kernels belong to the same applica-
tion (e.g., large language models [24], [53], [57], graphics [68],
and scientific computing [25]), or competitive, where two
separate applications launch kernels on the two resources [13].
In both cases, the resulting simultaneous use of memory by



both GPU and PIM kernels raises an important question: how
do we efficiently route and schedule MEM and PIM requests
to ensure fairness between co-executing kernels while also
maximizing system throughput?

To answer this question, we need to look at the two key
resources that are shared by MEM and PIM requests: 1) the
memory controller, and 2) the interconnect between the GPU’s
streaming multiprocessors (SMs) and the memory controllers.
We first discuss contention at the memory controller. Figure 1
shows how the memory controller (MC) maintains separate
queues for MEM and PIM requests, with an arbiter (Arb)
to switch between them. The switching policy has a direct
impact on system efficiency since switching modes: 1) requires
the draining of in-flight requests, potentially causing bank
idle time, and 2) can hurt locality since MEM and PIM
requests often map to different rows. These factors influence
queueing delay and the rate at which each request type is
served, thereby directly affecting the performance of both GPU
and PIM kernels. Optimizing for both system throughput and
application fairness is a hard problem, since throughput favors
infrequent switching while fairness favors frequent switching.
This requires the design of a smart switching policy that can
balance the two goals.

PIM kernels are optimized to fully utilize SM resources to
send as many PIM requests as possible. Since the memory
controller may not be able to keep up with this burst of
requests under contention, PIM requests can quickly fill up
the memory controller queues and create backpressure in the
interconnect, causing denial of service to MEM requests. Not
only can this stall the SMs executing GPU kernels, but also
reduce the memory controller’s visibility into the load/store
stream and lead to poorer decision making.

Motivated by these challenges, this paper makes the follow-
ing contributions:

• A comprehensive analysis and characterization of
GPU/PIM co-execution on a PIM-enabled GPU under
180 competitive scenarios and a GPT-3-like collaborative
scenario, focused on interconnect and memory controller
bottlenecks. We discover that PIM kernels can easily
overwhelm the shared memory subsystem by its high
request injection rate, causing unfairness. Concurrently,
inefficient switching at the memory controller can further
exacerbate fairness and throughput bottlenecks.

• Evaluation of the efficacy of adding a separate virtual
channel (VC) for PIM requests to alleviate congestion
at the interconnect. Our analysis shows that this can
improve the arrival rate of MEM requests at the memory
controller by an average of 2.87x for some memory
controller scheduling policies, while adding less than 5%
area overheads.

• Design and evaluation of a novel memory controller
scheduling policy, called F3FS, that modifies FR-FCFS
by adding an extra layer of arbitration to favor current
mode, but caps the number of each request type served
to provide fairness. The cap can be adjusted to provide

fairness between competing applications or reduce exe-
cution time for collaborating ones.

II. BACKGROUND

A. PIM Architectures

The placement of functional units in/near memory deter-
mines the efficiency of the resulting PIM architecture. Cost and
performance increase in going from architectures that place
compute between the memory chips and the host interface,
(such as on the base die of HBM [3], [13], [35], [54]) to
subarray-level PIM, where compute is placed at each subarray
within a bank [66]. On this spectrum of performance and
complexity, bank-level PIM has emerged as a practical middle
ground by placing compute near the banks within the main
memory [1], [22], [38], [40], [42], [60], offering reduced
execution time and energy consumption [1]. Figure 1 shows
such an architecture.
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Fig. 2: PIM functional unit
(FU) microarchitecture. The
SIMD ALU can implement
generic math and logic oper-
ations and/or domain specific
operations.

Figure 2 shows the mi-
croarchitecture of a PIM
functional unit (FU). Each
FU incorporates a SIMD
ALU along with a local reg-
ister file to store operands
and temporary values. The
register file is DRAM word-
wide, which is typically tens
of bytes (32 bytes in HBM).
The SIMD ALU operates
on a DRAM word, which
can include multiple data el-
ements (e.g., 16 FP16 ele-
ments [22], [42]).

PIM kernels mapped to bank-level PIM architectures lay out
data in row buffer-sized chunks across multiple banks, process-
ing them in parallel one DRAM word at a time. Given the large
datasets of the applications that PIM targets, this could result in
a large influx of requests in a very short period. In order to curb
this injection rate and provide higher command bandwidth,
bank-level PIM architectures often implement a separate PIM
mode [22], [40], [42], [60]. Within PIM mode, a single PIM
request is executed by all banks in a lock-step manner. The
memory controller switches between PIM and MEM modes,
effectively choosing which of PIM queue and MEM queue to
service requests from (Figure 1). The PIM register file (RF)
holds state across MEM/PIM switch boundaries, allowing for
PIM correctness.

B. PIM Programming

There are two broad PIM programming paradigms: 1)
coarse-grained offloading, where the application configures
control registers in the memory controller that specify the
function to compute [13], [16], and 2) fine-grained offloading,
where the application issues special memory instructions that
encode PIM operations (e.g., add), which are scheduled by
the memory controller [41], [60]. The fine-grained instructions



look and behave like non-temporal (i.e., non-cached) stores for
the host core, and the model we use in this paper.

load row a ➔ RF

add row b, RF ➔ RF

store RF ➔ row c

c[i] = a[i] + b[i]

load <row a, col 0> ➔ RF[0]
load <row a, col 1> ➔ RF[1]
...
load <row a, col n> ➔ RF[n]

add <row b, col 0>, RF[0] ➔ RF[0]
add <row b, col 1>, RF[1] ➔ RF[1]
...
add <row b, col n>, RF[n] ➔ RF[n]

store RF[0] ➔ <row c, col 0>
store RF[1] ➔ <row c, col 1>
...
store RF[n] ➔ <row c, col n>

PRE, ACT ROW B

PRE, ACT ROW C

Fig. 3: Vector addition PIM kernel. PIM kernels have a
block structure, where a block consists of consecutive PIM
operations to the same row. The size of the block is usually a
multiple of the register file (RF) size (n).

Figure 3 shows an example fine-grained PIM kernel that
adds two vectors. The vectors are laid out in separate rows and
aligned to the row buffer size. The kernel first loads n DRAM
word-sized chunks of vector a into the PIM register file. The
register file contents are then added to vector b, performing a
DRAM word-wide SIMD operation and storing the sum into
the register file. Finally, the register file contents are stored
into vector c.

The figure also exemplifies the block structure of PIM ker-
nels, where blocks consist of consecutive PIM operations (e.g.,
load) to the same row and are separated by a precharge and
an activate. While instructions within blocks can be reordered,
blocks must be executed sequentially for correctness due to
their dependencies. Such sequential ordering can be achieved
on the host side by using special barriers (e.g., Orderlight [48],
which prevents reordering at SM’s operand collector stage)
and at the memory controller by using a scheduling policy like
first-come first-served. We use this block structure to minimize
MEM interference with PIM (Section VII-B).

C. Concurrent GPU Kernel Execution

Concurrent utilization of host and PIM cores is an ef-
fective way of maximizing hardware utilization and appli-
cation performance. Large language models (LLMs) exploit
parallelism by simultaneously computing on different fully
connected layers on the host and PIM [57] and by over-
lapping Query/Key/Value (QKV) generation on the host with
multi-head attention on PIM [24], [53]. Other domains, like
graphics [68] and scientific computing [25] also achieve per-
formance and energy gains with such concurrent execution.

While streams [4], [21], [50] can be used to launch concur-
rent requests from the same application, CUDA multi-process
service (MPS) [52] allows for GPU resources to be shared
simultaneously by different host processes. Kernels from dif-
ferent processes each have their own address space, but they
share the GPU SMs, caches, and memory bandwidth. Taking a
step further, CUDA multi-instance GPU (MIG) [51] adds the

ability to physically partition GPU resources (including SMs,
interconnect links, memory capacity, and memory bandwidth)
into several instances, essentially creating several sub-GPUs
that can be used by independent applications.

III. EVALUATION METHODOLOGY

A. Simulator

We use a modified version of GPGPU-Sim [34] that im-
plements a cycle-level all-bank PIM execution model, closely
based on commercial designs [42]. Table I summarizes key
architectural parameters. The main memory incorporates a
PIM FU for a pair of banks, with each bank receiving 8
register file entries out of 16. The memory controller is
updated to incorporate separate MEM and PIM queues. PIM
kernels, implemented in CUDA following the ISA of the PIM
architecture we model [42], send PIM operations modeled as
cache streaming (CS) stores1. We modified GPGPU-Sim’s core
model to ensure that CS stores bypass all caches and are sent
to the main memory directly.

TABLE I: Simulation Parameters

GPU Parameters
GPU Model: Nvidia Quadro GV100

Number of SMs: 80 Core Frequency: 1132 MHz
L1D Cache: 32 KB Shared Memory: 96 KB
L1I Cache: 128 KB L2 Cache: 6 MB

Memory Parameters
Memory Technology: HBM

Channels/Banks: 32/16 DRAM Frequency: 850 MHz
Bus Width: 16 B Burst Length: 2

MEM-Q/PIM-Q Size: 64 entries NoC buffer size: 512 entries
PIM FUs: 8/channel PIM RF Size: 16 entries

Timing Parame- tCCDs=1, tCCDl=2, tRRD=3, tRCD=12, tRP=12
ters (cycles): tRAS=28, tCL=12, tWL=2, tWR=10, tRTPL=3
Address Map RRRR.RRRRRRRR.RBBBCCCB.DDDDDCCC
(bits): Key: R=Row, B=Bank, C=Column, D=Channel

B. Benchmarks

We evaluate on two application scenarios: competitive,
where two separate applications launch a GPU and PIM kernel,
and collaborative, where the same application launches both.
The GPU and PIM kernels are launched concurrently using
CUDA streams.

In order to facilitate PIM programming, we turned off
pseudo-random I-poly [55] mapping to channels in favor of
a more regular scheme, listed in Table I. PIM kernels use the
simplified mapping to map each warp to a single memory
channel and each thread within a warp to a single bank.
This mapping ensures that requests to each PIM unit are
issued sequentially. We use Orderlight barriers [48] to prevent
reordering of requests within the SM. PIM kernels require
eight SMs (total of 1024 threads, 4 warps per SM) to maximize
speedup, leaving 72 SMs for the GPU kernel.

1https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#
cache-operators

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators


Competitive: We borrow nine PIM-amenable kernels from
prior work [48]2. Table III lists the name and input size of
each benchmark. These PIM kernels are run concurrently with
20 Rodinia benchmarks [12]3 on the host GPU, giving us 180
unique GPU/PIM kernel combinations. Input size for the GPU
benchmarks, listed in Table II, is taken from prior work [26],
[30]. Both PIM and GPU kernels are run continuously in a
loop until each kernel has run at least once. We report data
for the first completed run of each benchmark.

TABLE II: GPU Benchmarks

No. Benchmark Input size
G1 b+tree 1 million keys, 10000 bundled queries, a range

search of 6000 bundled queries with the range
of each search 3000

G2 backprop 655360 input nodes
G3 bfs 1 million vertices
G4 cfd 97K elements
G5 dwt2d 1024x1024 images, forward 5/3 transform
G6 gaussian 2048x2048 matrix
G7 heartwall 656x744 video, 2 frames
G8 hotspot 2048x2048 data points, pyramid height=4, 2 it-

erations
G9 hotspot3D 512x512 data points, 8 layers, 10 iterations
G10 huffman 262144 elements
G11 kmeans 494020 points, 34 features
G12 lavaMD 1000 boxes
G13 lud 2048x2048 data points
G14 mummergpu Reference: 20K sequences, 71 characters; Query:

50K sequences, 25 characters
G15 nn 10000390 hurricanes across 10 files, 10 nearest

neighbors
G16 nw 2048x2048 data points
G17 pathfinder 100000x100 grid, pyramid height=4
G18 srad v1 512x512 data points, 100 iterations, lambda=0.5
G19 srad v2 2048x2048 data points, 2 iterations, lambda=0.5
G20 streamcluster 65536 points, 256 dimensions, 10-20 centers,

1000 intermediate centers

TABLE III: PIM Benchmarks

No. Benchmark Input size
P1 Stream Add

67M elements per vector
P2 Stream Copy
P3 Stream Daxpy
P4 Stream Scale
P5 BN Fwd 8M batches, with 8 elements eachP6 BN Bwd
P7 Fully connected Inputs = Outputs = 16, 262,144 batches
P8 KMeans 1,048,576 points, 32 features
P9 GRIM 8M bitvectors, 32 base pairs

Collaborative: We emulate the execution of a GPT-3-6.7B
like large language model (LLM) [10], overlapping the exe-
cution of QKV generation with multi-head attention (MHA),
similar to prior work [53]. To achieve this, we execute three
GEMM kernels in a series on the GPU (QKV generation)
with the PIM executing GEMV and softmax layers (MHA).

2STREAM-Triad was excluded because it has the same access pattern as
STREAM-Add. Histogram was excluded because only a small fraction is
PIM-amenable.

3We do not evaluate leukocyte because the provided input file did not
generate significant memory traffic. hybridsort and particlefilter
ran for too long. myocyte encountered a bug with GPGPU-Sim.

The model uses a batch size of 128, sequence length of 1024,
and an embedding table of size 4096. We assume that the KV
cache for each layer is loaded on demand to keep the model
memory footprint in check.

C. Metrics

Competitive: We compute the speedup of both the GPU
and PIM kernels as the ratio of their execution time when
run alone on 80 SMs and 8 SMs, respectively, to their
execution time when run under contention. We then use this
speedup to evaluate each scheduling policy across two key
metrics: fairness and throughput. Fairness is defined using
Fairness Index [15] which quantifies the disparity between the
individual GPU and PIM kernel speedups. It is expressed as:

Fairness Index = min(
SpeedupPIM

SpeedupMEM
,

SpeedupMEM

SpeedupPIM
) (1)

Throughput is defined using System Throughput [15] which
quantifies the kernel execution rate of the system, measured
as the sum of speedups of the GPU and PIM kernels. This
is a direct measure of concurrency and the rate at which the
system can service kernels.

Collaborative: The key metric in this scenario is the
speedup of the concurrent kernel execution relative to the serial
execution of the kernels. We compare this speedup to an ideal
scenario where the total execution time is the execution time of
the longer running kernel when run alone, representing perfect
overlap.

D. Memory Controller Scheduling Policies

We summarize below the baseline memory scheduling poli-
cies we evaluate. Note that most of these policies were not
designed for PIM architectures; we therefore explain how they
switch between PIM and MEM modes.

1) First-Come First-Served (FCFS): Executes requests in
the order they arrive. Switches modes according to the
request type.

2) MEM-First: Always issues MEM requests, if there are
any. Prior art has used this policy before [13].

3) PIM-First: Always issues PIM requests, if there are any.
4) First-Ready FCFS (FR-FCFS) [56]: Prioritizes row

buffer hits over the oldest request, switching modes if
the oldest request is from a different mode at the time of
a row buffer conflict on all banks. Each bank maintains
a conflict bit, which is set when there is a row buffer
conflict and the oldest request is from a different mode.
The bank then stalls until a mode switch occurs, which
is performed after every bank has set its conflict bit.

5) FR-FCFS-Cap: A fairer version of FR-FCFS that CAPs
the number of row buffer hits that bypass the oldest
request [46].

6) Blacklisting Memory Scheduler (BLISS) [62]: Blacklists
applications that issue more than n requests consecu-
tively under FR-FCFS. Then implements the following
priority order: 1) non-blacklisted application first, 2) row



buffer hit first, 3) oldest first. The blacklist is cleared
every few thousand cycles. This mechanism effectively
deprioritizes high memory intensity applications.

7) First-Ready Round-Robin FCFS (FR-RR-FCFS) [31]:
Modifies FR-FCFS to improve fairness by cycling
through modes on row buffer conflicts, effectively im-
plementing the following priority order: 1) row buffer hit
first, 2) next mode in round-robin order first, 3) oldest
first within the current mode.

8) Gather & Issue (G&I) [41]: Switches to PIM when
PIM queue occupancy reaches a high watermark, then
drains the queue until the occupancy falls below a low
watermark.

Each of the above described policies use FR-FCFS within
MEM mode, except FCFS, while PIM requests always execute
in FCFS order to ensure correctness.

IV. CHARACTERIZING GPU/PIM INTERFERENCE

In order to understand the performance impact of co-
executing PIM and GPU kernels, we first quantify each
application type’s memory behavior. Figure 4 compares the
memory access characteristics of the Rodinia benchmark suite
to the PIM kernels under FR-FCFS policy, in terms of (a)
interconnect request arrival rate, (b) DRAM request arrival
rate, (c) DRAM bank-level parallelism (BLP), and (d) DRAM
row buffer hit-rate (RBHR). The boxes represent the inter-
quartile range for each metric, with the middle line and
whiskers representing the median and extremes, respectively.
Request arrival rates are measured in terms of total GPU
cycles, while BLP is measured in terms of active DRAM
cycles, i.e., the average BLP while the DRAM is servicing at
least one request. Since PIM kernels only need eight SMs to
fully saturate the memory subsystem interface, we compare
them to Rodinia kernels running on both 80 and 8 SMs
(represented as GPU-80 and GPU-8, respectively).
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Fig. 5: Average
speedup of Rodinia
benchmark suite
when running on
72 SMs and when
co-executing with
four memory intensive
kernels.

PIM kernels have a 3.95x higher
request arrival rate into the inter-
connect compared to GPU-8, and
is only 17.8% lower than GPU-80,
on average. While regular memory
requests get filtered by the L2 cache,
PIM requests are not, worsening the
imbalance at the memory controller.
PIM request arrival rate at the mem-
ory controller is heavier than both
GPU-8 and GPU-80, on average,
outpacing them by 8.33x and 2.07x,
respectively.

Not only can MEM and PIM re-
quests not be issued concurrently,
but they also exhibit very different
memory access behavior. Figures 4c
and 4d compare the BLP and the
RBHR of the GPU and PIM kernels.
PIM kernels not only execute on all banks at the same time
(Figure 4c shows a single bar at 16 for PIM kernels), but
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Fig. 4: Memory access characteristics of the Rodinia bench-
mark suite, running on 80 and 8 SMs, and the PIM kernels
in terms of (a) interconnect request arrival rate, (b) DRAM
request arrival rate, (c) DRAM bank-level parallelism (BLP),
and (d) DRAM row buffer hit rate (RBHR). The high whiskers
are labeled with the most intensive kernel for that metric.

also exhibit high row buffer locality. Combined with their high
request arrival rate (Figure 4b), PIM kernels can severely affect
a co-executing application’s performance. Figure 5 compares
the impact of memory intensive GPU kernels and PIM kernels
on co-executing kernels. The figure shows the average speedup
of the Rodinia benchmark suite running on 72 SMs, with
the remaining 8 SMs occupied by one of G4, G6, G15,
G17, and P1. The four chosen GPU kernels are the most
memory intensive in terms of interconnect requests (G4),
DRAM requests (G15), BLP (G6), and RBHR (G17) when
running on 8 SMs (Figure 4c). PIM kernels show very little
variation across each metric and so we picked P1. The speedup
is normalized to Rodinia benchmark suite running alone on
80 SMs. To separate the effects of memory contention and
reduced SM availability, the figure also presents the speedup
of running the kernels on 72 SMs without any contention.
The figure shows how the benchmark suite slows down by
an average of 60% when co-executing with P1, compared to
a worst-case average slowdown of 30% when running with
other Rodinia kernels.

V. MEMORY ACCESS: INTERCONNECT BOTTLENECKS

PIM kernels are optimized to maximize the utilization of
PIM FUs by saturating the memory subsystem. This leads to
a very high request arrival rate for the duration of the kernel’s
execution that can deny service to co-executing applications
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(b) Separate virtual channels.

Fig. 6: MEM request arrival rate into the memory controller, without (a) and with (b) separate MEM and PIM virtual channels,
normalized to standalone execution (higher is better).

(Figure 4a). Figure 7a shows this scenario, where the PIM
requests fill the interconnect→L2 and L2→DRAM queues,
denying service to GPU kernels. To quantify this degradation,
Figure 6a characterizes the request arrival rate of each GPU
kernel under each memory scheduling policy, averaged across
all PIM kernels. We present results for each scheduling policy
since the service rate of each policy determines how fast the
PIM requests are drained from the interconnect. Note that
some applications experience an increase in the arrival rate.
This is because PIM interference increases MEM queuing
delay, improving MEM RBHR and reducing GPU kernel’s
overall execution time.
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(a) PIM kernels have very high request arrival rates, causing conges-
tion at the interconnect, interconnect→L2, and L2→DRAM queues,
and unfairly slowing down GPU kernels.
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(b) Separation of MEM (blue) and PIM (red) requests into separate
virtual channels and queues to minimize interference between them.

Fig. 7: Comparison of the baseline memory subsystem (a)
with our proposed changes (b).

While throughput optimizing policies like FR-FCFS are
able to sustain a higher arrival rate for MEM requests than
others, the degradation remains severe, with even FR-FCFS
suffering a 41% drop on average. A policy like MEM-First
should, intuitively, perform well here, but its performance
is limited by the fact that most MEM requests are stalled
behind PIM requests in the interconnect. This demonstrates

that even though the memory controller scheduling policy im-
pacts interconnect congestion, PIM kernels’ memory intensity
necessitates changes to the interconnect architecture.

A. Separating MEM and PIM Virtual Channels

In order to alleviate the problem of congestion at the
interconnect, we propose separating MEM and PIM requests
into separate queues all the way from the SMs to the memory
controller. Figure 7b illustrates this proposal. Memory requests
entering the interconnect from the SMs are split into two
virtual channels (VCs), one each for MEM and PIM requests.
These virtual channels empty into interconnect→L2 cache
queues, where MEM requests are picked up by the cache while
PIM requests are forwarded to the memory controller. Finally,
the two request types also share the links between L2 cache
and memory controllers, necessitating splitting of L2→DRAM
queues as well.

Using separate VCs and queues ensures that the two request
types do not interfere until they reach the memory controller,
preventing PIM requests from stalling MEM requests. Further-
more, the system provides fairness at each link by switching
between the two queues in a round-robin fashion. The crossbar
interconnect uses a modified version of the iSlip algorithm [44]
where the arbiter records the previous VC served for each
incoming link and switches to the other VC presuming there
is traffic on it. The efficacy of this solution is demonstrated in
Figure 6b. We split existing interconnect queues in half to add
a PIM VC, keeping the total queue size in Figures 6a and 6b
equal. While most policies experience an increase in the arrival
rate, MEM-First experiences the biggest jump, with its average
degradation reducing from 68% to 9% (2.87x improvement).

Adding virtual channels entails area and power costs, how-
ever. The VC allocator, used for allocating output virtual
channels to input virtual channels, grows quadratically in
the number of ports and virtual channels [69]. Meanwhile,
the number of control wires to encode the VC information
with each packet grows logarithmically. Despite the significant
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Fig. 8: Fairness (a) and throughput (b).

asymptotic growth, additional VCs add modest area and power
overheads, especially if the queues are long and the routers
are pipelined. Based on the data from Yoon et al. (Figure 4(c)
in [69]), a router based on 45nm technology with 32 queue
entries, 128-bit channels, and a clock speed of 1ns experiences
∼5% increase in area when going from a single VC to two.
Since our evaluated system is based on a smaller process
node (12nm), uses longer queues (512 entries), and runs at
a comparable clock speed (0.88ns), we expect the overheads
to be even lower.

VI. MEMORY UTILIZATION: SCHEDULING BOTTLENECKS

Past the interconnect queues, MEM and PIM requests again
contend at the memory controller. The memory controller
needs a mode switching policy to switch between MEM and
PIM modes to serve requests of each type. The design of an
efficient mode switching policy is non-trivial, for two reasons.
The first reason is the increase in queuing delays. Since MEM
and PIM requests cannot execute concurrently, each of them
suffers increased queueing delays while waiting for requests
of the other type to complete. However, each application has
a different tolerance for queueing delays, creating a fairness
problem.
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PIM→MEM

PIM Request
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Fig. 9: Switching between MEM and PIM modes leads to loss
in locality since the two request types often map to different
rows, as seen for requests mapping to Rows X (PIM) and B
(MEM). MEM→PIM switches also suffer from bank idle time,
like Bank 1 in the figure, since MEM requests on different
banks execute asynchronously.

The second difficulty is the non-trivial cost of switching, as
depicted in Figure 9. When the memory controller performs

a MEM→PIM switch, all in-flight MEM requests must be
drained before any PIM request can be issued. Since each
memory bank services requests concurrently and indepen-
dently, this leads to idle time for banks that finish first (Bank 1
in Figure 9). In addition, both MEM→PIM and PIM→MEM
switches may cause reduced row buffer locality since the two
types of requests often map to different rows (Rows X and B
in Figure 9).

A. Competitive Co-execution

We first characterize the performance of the various memory
controller scheduling policies that we listed in Section III-D
under the competitive scenario, both with and without separate
MEM/PIM VCs. We label the two configurations as VC1
(Figure 7a) and VC2 (Figure 7b). Figure 8 shows the fairness
index and throughput for each PIM kernel, averaged across
all GPU kernels. Figure 10 presents the average (a) number of
mode switches (normalized to FCFS), (b) number of additional
MEM conflicts per switch, and (c) latency of draining MEM
queue per switch, across all combinations. Figure 10a uses
geometric mean, while 10b and 10c use arithmetic mean. The
figures also include results for our proposed policy, which we
will introduce and discuss later in Section VII.

FCFS schedules memory requests in arrival order, resulting
in frequent switches (Figure 10a). As a result, both individual
application performance and hardware utilization can be com-
promised. While such switching helps fairness to a certain
degree, especially with the VC2 configuration, the lack of
locality and parallelism awareness hurts throughput.

MEM-First and PIM-First favor a single request type, with
the potential for the other request type to experience extreme
unfairness or starvation: a fairness index of 0 is common
(Figure 8a). Most throughput gains often stem from a single
application that submits the request type favored by the policy
(Figure 8b). Both policies also suffer from frequent switching
(Figure 10a) and high switch overheads (Figures 10b and 10c),
particularly in the VC1 configuration.



FR-FCFS optimizes for locality by prioritizing row buffer
hits over older requests. Such a design introduces two sources
of unfairness: 1) high row buffer locality, and 2) high ac-
cess frequency. Both characteristics are true of PIM kernels
(Section IV), meaning that FR-FCFS inherently favors PIM
kernels. This is evident from Figure 8b, where MEM speedup
contributes as little as 35% to the overall speedup (P5/VC1,
P6/VC1), with the average contribution at 41% and 45% with
VC1 and VC2 configurations, respectively. FR-FCFS-Cap
solves the first unfairness issue by restricting the number of
row buffer hits that bypass older requests, improving fairness
and providing starvation freedom with the VC2 configuration.
The policy still, however, suffers from the second source and
can cause starvation with VC1 configuration (P3, P6). The
CAP, set empirically to 32, also introduces more switches
(Figure 10a), which reduces throughput by 3.7% and 2.8%,
on average, under VC1 and VC2, respectively, compared to
FR-FCFS.
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(c) MEM drain latency (in DRAM cycles) per switch.

Fig. 10: Average number of mode switches (a) and
MEM→PIM switch overheads in terms of additional MEM
conflicts (b) and the latency of draining the MEM queue (c).

BLISS builds upon FR-FCFS, but performs worse than it
in both our key metrics. Depending on its blacklist schedule,
BLISS devolves into either one of MEM-First, PIM-First, or
FR-FCFS. Our analysis shows that it spends around 20%, 20%,
and 60% time in each of those states with a blacklist threshold
of 4. Performing a sweep of the blacklist threshold, we note
that BLISS performs best with a lower threshold, indicating
its tendency to converge toward FR-FCFS.

G&I, while designed to be a MEM-friendly policy [41],
heavily favors PIM requests and even causes starvation with
the VC2 configuration (Figure 8a, P5). Owing to PIM kernels’

high request arrival rate, PIM requests cross the high threshold
(set to 56) very quickly and fall below the low threshold (set to
32) only when either: 1) MEM requests create back pressure,
or 2) the PIM kernel is nearing completion. VC2 mitigates
interference at the interconnect, leading to starvation similar
to MEM-First and PIM-First.

FR-RR-FCFS is the fairest policy in our characterization,
achieving average fairness indices of 0.55 and 0.77 with
VC1 and VC2 configurations, respectively. By switching mode
on row buffer conflicts, FR-RR-FCFS ensures that all co-
executing applications receive service and resolves the FCFS-
inherent unfairness in FR-FCFS. However, the policy is sill
prone to favoring applications with high locality since only
row buffer conflicts switch the application being serviced. We
see this in Figure 8b with P4/VC2, where the PIM kernel’s
(STREAM-Scale) high locality (99.6%) hurts GPU kernels’
speedup and provides 60% of the throughput, on average.

B. Collaborative Co-execution

We next look at the collaborative scenario where all policies
execute a decoder-only LLM (Section III). This scenario is dif-
ferent from the competitive scenario in that the primary metric
is total execution time, not fairness. Figure 11 presents the
speedup under each policy compared to sequential execution of
the two kernels. Under VC1 configuration, all policies struggle
to achieve any speedup. The key problem here is that QKV
generation, running on GPU SMs, is the longer running of the
two kernels, but the PIM kernels produce significantly more
traffic and restrict the time MEM requests receive service.
This allows a policy like G&I to work well. By favoring PIM
requests, G&I is able to drain the interconnect and reduce
congestion, allowing MEM requests to make progress. At the
memory controller, MEM requests are issued once the MEM
queue fills up and prevents PIM requests from coming in.
While PIM-First should exhibit similar characteristics, it lags
behind because of nearly double the number of switches and
6x higher switching latency.
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Fig. 11: LLM speedup for each policy with both a combined
and separate VCs. The speedup is normalized to sequential
execution of QKV generation and multi-head attention, while
the Ideal represents the minimum of the two stages.

The results vary significantly in VC2 configuration. Since
MEM and PIM requests do not interfere at the interconnect,
PIM-favoring policies like G&I perform very close to sequen-
tial execution. MEM-First achieves a speedup >1 because it
favors the slower running kernel, but it still limits parallelism.
FR-FCFS shines here because it is able to maximize memory
throughput, minimizing the overall execution time.



VII. FIRST MODE-FR-FCFS (F3FS) - NEW AND
IMPROVED PIM-AWARE MEMORY ACCESS SCHEDULING

We propose a new memory controller scheduling policy,
called First Mode-FR-FCFS (shortened to F3FS), which
attempts to improve both fairness and throughput. F3FS adds a
new arbitration stage in front of FR-FCFS that favors requests
in the current mode. That is, it implements the following
priority order: 1) current mode first, 2) row buffer hit first, 3)
oldest first. Within MEM and PIM modes, the queues utilize
FR-FCFS and FCFS, respectively. By favoring requests in
the current mode, F3FS improves throughput by maximizing
locality and minimizing the switching frequency. To prevent
one mode from starving another, F3FS also implements a
CAP on the number of requests serviced in the current mode
that bypass an older request in the other mode. Here, age is
implemented as an incrementing ID assigned to each request
as it enters the memory controller.

While fairness is an important metric for competitive co-
execution that favors equal CAPs on MEM and PIM requests,
collaborative co-execution may favor an unequal split of
resources that results in an overall lower execution time. To
support this, F3FS uses two CAPs, one each for MEM and
PIM modes. In a collaborative scenario, the application can
favor one type of kernel by setting a higher CAP value for it
than the other. These asymmetric CAPs can also be configured
by system software to enforce process priorities in competitive
scenarios. We leave an exploration of the latter to future work.

A. Hardware Implementation
Figure 12 presents the architecture of the mode switch logic.

In particular, the figure highlights the additions, deletions, and
modifications for F3FS compared to the FR-FCFS switching
policy. While F3FS introduces additional comparators and
structures for counting the number of bypasses, it also gets
rid of the per-bank conflict tracking that FR-FCFS performs.
Such tracking goes beyond just maintaining a single bit for
each bank and implementing the AND circuitry: for instance,
the logic needs to track whether every bank has had at least one
request issued before marking the next request as a conflict.
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Fig. 12: Hardware overheads of F3FS in terms of the mode
switch logic complexity, compared to FR-FCFS.

In order to quantify the area overheads of F3FS over FR-
FCFS, we synthesized their mode switching logic on an AMD
XCZU5EV FPGA [6] using Vitis HLS [5]. The synthesis
reveals that F3FS requires 275/143 LUTs/flip-flops, compared
to 377/88 for FR-FCFS.

B. Evaluation

We compare F3FS with the baseline policies under both the
VC1 and VC2 configurations. First, we look at competitive
co-execution, where we use the same CAP (empirically set to
256) for both MEM and PIM to promote fairness. This CAP,
determined from a sensitivity study, is strategically set to a
multiple of the PIM RF size (eight per bank) to exploit the
block structure of PIM kernels (Section II-B). Figure 8 shows
the fairness and throughput improvements.

Competitive co-execution: F3FS performs the same or
better than the best performing state-of-the-art policies in
both VC1 and VC2 configurations. Under VC1 configuration,
F3FS provides fairness comparable to FR-RR-FCFS, while
achieving 1.8% and 5.1% higher average throughput compared
to FR-FCFS and FR-RR-FCFS, respectively. This is a direct
result of F3FS switching less frequently (Figure 10a) while
paying comparable costs per switch (Figures 10b and 10c).
Meanwhile, under VC2 configuration, F3FS outperforms FR-
RR-FCFS in terms of both fairness and throughput by 4.7%
and 2.6%, respectively, on average. This is a key result
that highlights the throughput benefits of favoring current
mode and fairness benefits of capping the wait time of
each mode. Beyond averages, F3FS improves the worst-case
fairness/throughput by 76.76%/28.98% under VC1 and by
146.22%/29.84% under VC2, respectively, compared to FR-
RR-FCFS. Combining F3FS with our proposed interconnect
changes yields average and best case fairness/throughput im-
provements of 48%/13% and 72%/22%, respectively, com-
pared to a baseline single VC interconnect and FR-RR-FCFS
policy. These improvements highlight how F3FS enhances the
feasibility of concurrent host/PIM execution.
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Fig. 13: Fairness (a) and throughput (b) of a compute intensive
(G10) and four memory intensive (G6, G11, G17, G19)
Rodinia kernels, averaged across all PIM kernels.

In order to evaluate how extremes in the memory intensity
of the GPU kernels affects the performance of F3FS in a



competitive scenario, Figure 13 shows the average fairness and
throughput when a PIM kernel is executed with a compute
intensive kernel (G10) or one of four of the most memory
intensive Rodinia kernels (G6, G11, G17, G19), averaged
across all PIM kernels (an orthogonal slice of Figure 8). The
memory intensive kernels are picked based on our character-
ization in Figure 4. With the compute intensive kernel G10,
there is very little variation in both fairness and throughput
across scheduling policies and interconnect configurations,
highlighting such applications’ tolerance for memory access
delays. Memory intensive kernels have more varied results.
F3FS works well with G19, where interconnect traffic is
high, but is filtered by the L2 cache, and is indicative of the
common case of moderate memory traffic. F3FS is able to
equalize queuing delays for MEM and PIM requests by using
a symmetric CAP, while maintaining long enough phases to
achieve BLP and RBHR comparable to standalone execution
and minimize switching overheads. With G6 and G11, F3FS
unfairly favors GPU kernels due to long MEM phases. G6
achieves higher BLP with F3FS than other policies, elongating
the MEM drain latency per MEM→PIM switch. G6 also has
long MEM phases because of its poor locality (average RBHR
of 32%). F3FS, by equalizing the number of MEM and PIM
requests served, inadvertantly leads to longer MEM phases
because MEM requests take longer than PIM requests, on
average. G11’s high MEM request arrival rate ensures that
MEM requests frequently execute up to the CAP. Even when
the CAP is reached, the high MEM arrival rate often results in
staying in MEM mode due the oldest request at the memory
controller continuing to be MEM. G17’s high RBHR results in
smaller MEM phases, resulting in unfairly high PIM speedup
due to the application’s sensitivity to prolonged MEM queuing
delays resulting from a PIM CAP of 256.

Collaborative co-execution: Figure 11 presents the
speedup of the LLM under each policy. This is where F3FS’s
asymmetric CAP comes into play. We configure F3FS to use
MEM/PIM CAPs of 256/128 and 64/64 in VC1 and VC2 con-
figurations, respectively, based on a sensitivity study. Setting
the asymmetric CAPs is a balancing act since throughput fa-
vors high CAPs while fairness favors lower ones. Starting with
high values, the asymmetric CAP under VC1 configuration is
lowered based on two principles: 1) a high enough PIM CAP
to ensure consistent influx of MEM requests into the memory
controller, and 2) a high enough MEM CAP to service as many
MEM requests as possible without starving PIM requests.
While this asymmetry helps in the VC1 configuration, VC2
configuration favors a symmetric CAP. To understand this, we
discuss the MEM and PIM CAPs separately. For MEM CAP,
increasing the value beyond 64 did not help since only 8% of
MEM→PIM switches were triggered due to the CAP being
exceeded. Meanwhile, for the PIM CAP, lowering the value
below 64 had two implications: 1) increased switch overheads,
and 2) fewer MEM requests in the MEM queue at the end of a
PIM phase, reducing the memory controller’s visibility into the
GPU kernel’s memory access stream and hurting locality. The
chosen parameters allow F3FS to match the best performing

policies in both the configurations (G&I in VC1 and FR-FCFS
in VC2). Compared to FR-RR-FCFS, F3FS improves speedup
by 11.23% and 7.37% in VC1 and VC2, respectively. These
results highlight the flexibility of F3FS, showing how it can
be dynamically configured to an application’s needs.

C. Discussion
Ablation study: In order to better understand F3FS’s

performance improvements, we study the impact of its three
components that differ from FR-FCFS-Cap: 1) CAP on the
number of requests serviced in current mode (vs. row buffer
hits), 2) prioritizing current mode first, and 3) the ability to use
asymmetric CAPs on MEM and PIM modes. Figure 14a shows
the incremental performance impact of the three components
under VC2 configuration for P2 (averaged across all GPU
kernels, except kmeans since it starves with FR-FCFS-Cap)
and the LLM. The CAP for each stage is set separately to
maximize competitive performance, and is listed in the figure.
Moving the CAP from limiting row buffer hits to limiting
requests in the current mode improves the average fairness
index from 0.73 to 0.8 for P2, while reducing the LLM
speedup by 4%. Next, favoring current mode brings about
throughput improvements by reducing the number of switches,
while still maintaining nearly the same fairness index. The
LLM, on the other hand, drops to a speedup of 1.04. Finally,
the last bar demonstrates the impact of asymmetric CAPs
(MEM/PIM CAPs of 256/128 respectively to prioritize the
slower MEM kernel). Asymmetry negatively impacts fairness
in a competitive scenario, but benefits the LLM by reducing
the queuing delay for MEM requests, improving speedup by
10% and pushing it higher than that of FR-FCFS-Cap.
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Fig. 14: (a) Impact of F3FS components on fairness index
(FI) and system throughput (ST) of P2 and speedup of the
LLM. The shaded and non-shaded ST regions represent MEM
and PIM speedups, respectively. (b) Sensitivity of F3FS to
interconnect queue size under VC2 configuration in terms of
FI and ST across all GPU/PIM combinations.

Sensitivity to interconnect queue size: Figure 14b shows
the performance sensitivity of F3FS to the interconnect queue
size. The queue size is varied from half (256) to double (1024)
the baseline size of 512. The figure shows how F3FS is largely
agnostic to the queue size itself and neither benefits from
longer nor is impeded by shorter queues.



VIII. RELATED WORK

PIM architectures: A variety of PIM architectures have
been proposed in the past decade, not all of which utilize sep-
arate PIM and MEM modes. Some architectures separate regu-
lar DRAM from PIM DRAM (e.g., UPMEM [19], [63]), while
others place traditional processors near regular DRAM [3], [7],
[9], [54]. Additionally, charge sharing techniques modify the
memory controller to violate DRAM timing constraints and
activate multiple rows within a subarray to perform bulk bit-
wise operations [18], [58], [59].

PIM integration: UM-PIM [70] is a hardware/software
memory management scheme that optimizes accesses to PIM-
enabled memory and traditional memory for locality and band-
width, respectively. PIM-MMU [39] optimizes data transfers
between PIM-enabled and traditional memory by using a
dedicated Data Copy Engine that incorporates a PIM-aware
memory scheduling policy. Like UM-PIM, PIM-MMU also
uses separate optimized memory mapping schemes for each
memory type. PyPIM [43] is an end-to-end programming
framework for memristive PIM [14], [61] that incorporates
a PIM ISA, a host driver, and a Python development library,
along with a GPU-accelerated PIM simulator for testing and
validation. PIM-Enabled Instructions (PEI) [2] is a locality-
aware PIM offloading framework that utilizes ISA extensions
to program an in-core PEI Computation Unit (PCU). The PCU
executes the instructions either locally or on PIM based on
the locality of its input operands. GraphPIM [49] is another
PIM offloading framework designed for graph workloads.
GraphPIM works by offloading atomic instructions that access
an uncacheable PIM memory space to PIM units.

Memory controller scheduling: Memory request schedul-
ing for CPUs in multi-application scenarios is a well-studied
problem [36], [37], [46], [47], [62]. Most of these policies
require thread-level state maintenance and communication
between the host and the memory controller that, while
tenable for CPUs, would be too expensive for GPUs. ITS and
WEIS [32] are instruction throughput and weighted speedup
optimizing policies that utilize LLC misses per kilo instruc-
tions and DRAM bandwidth, respectively, to prioritize appli-
cations. Both would devolve into MEM/PIM-First depending
on their priority order. DASH [64] is a memory scheduler
for accelerator-rich systems that provides quality-of-service to
hardware accelerators executing real-time applications while
ensuring CPU applications make progress whenever possible.

SMS [8] is a memory scheduling policy for shared DRAM
CPU/GPU systems, where GPUs are often significantly more
memory intensive than CPUs. While SMS works in the
presented context, its batch granularity scheduling makes it
unsuitable for concurrent host/PIM accesses. In particular,
CPU/GPU batches that map to different banks can be serviced
in parallel, but host/PIM batches can not. SMS does not take
this exclusivity in account. G&I [41] is also a PIM-aware
policy for bank-level PIM architectures. Our evaluation shows
how the policy is PIM-biased and is outperformed by F3FS.

Host/PIM concurrency: LLMs can leverage host/PIM con-

currency by overlapping QKV generation and MHA on host
and PIM, respectively (AttAc! [53], NeuPIMs [24]) or by
distributing fully connected layers between host and PIM at a
head granularity (IANUS [57]). While AttAc! and IANUS take
care to not submit MEM and PIM requests simultaneously,
NeuPIMs proposes a dual row buffer architecture, one each
for serving MEM and PIM requests. F3FS makes none of
these assumptions and can be tuned based on application
characteristics. Pimacolaba [25] proposes software and hard-
ware optimization to parallelize Fast Fourier Transforms across
GPU SMs and PIM FUs. Chopim [13] optimizes data layout
and mapping to main memory, along with OS page coloring,
to reduce PIM/host access interference and maximize main
memory utilization. Pattnaik et al. [54] combine a GPU vs.
PIM affinity model with a dynamic execution time prediction
model to dispatch GPU kernels to GPU cores or PIM FUs,
with the goal of minimizing overall execution time. Most
application scheduling and memory management schemes can
be combined with our proposals to improve system utilization.

IX. SUMMARY

Integrating PIM-enabled main memories into existing sys-
tems remains an open challenge. In this paper, we show
how the sharing of the interconnect and main memory con-
troller by MEMory and PIM requests can severely degrade
application-level fairness and system-level throughput. The
memory intense nature of PIM kernels can overwhelm the
memory controller under contention and create back pressure
in the interconnect, hurting any co-executing application’s
memory performance. Our characterization of a GPU/PIM
system shows that such contention causes MEM request arrival
rate at the memory controller to drop by up to 95%. We
propose a two-step solution to remedy this. First, we modify
the interconnect and add a separate virtual channel (VC) for
PIM requests to mitigate MEM/PIM interference. Second, we
introduce a new memory controller scheduling policy, called
F3FS, that improves: 1) fairness, by providing equal service
to the two request types, and 2) throughput, by minimizing
MEM/PIM mode switching frequency. When evaluated on
180 competing GPU/PIM kernel combinations, our solution
achieved up to 72% and 22% better fairness and throughput,
respectively, compared to FR-RR-FCFS policy with a single
VC. F3FS is also tunable at runtime and can be configured
to favor one request type over another, allowing a GPT-3 like
LLM to execute 13.14% faster when compared to the same
baseline. Beyond performance averages, F3FS also improves
worst-case throughput and fairness metrics, enhancing the
feasibility of GPU/PIM co-execution.
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[45] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
Modern Primer on Processing in Memory,” 2022, arXiv: 2012.03112.

[46] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Schedul-
ing for Chip Multiprocessors,” in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), 2007, pp. 146–160.

[47] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems,”
in 2008 International Symposium on Computer Architecture, 2008, pp.
63–74.

[48] A. Nag and R. Balasubramonian, “OrderLight: Lightweight Memory-
Ordering Primitive for Efficient Fine-Grained PIM Computations,”

in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 298–310, event-place: Virtual
Event, Greece. [Online]. Available: https://doi.org/10.1145/3466752.
3480103

[49] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling Instruction-Level PIM Offloading in Graph Computing Frame-
works,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 457–468.

[50] NVIDIA, “CUDA Toolkit Documentation: Stream Management,”
Apr. 2024. [Online]. Available: https://docs.nvidia.com/cuda/
cuda-runtime-api/group CUDART STREAM.html

[51] NVIDIA, “Multi-Instance GPU,” Aug. 2024. [Online]. Available:
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

[52] NVIDIA, “Multi-Process Service,” Jun. 2024. [Online]. Available:
https://docs.nvidia.com/deploy/mps/index.html

[53] J. Park, J. Choi, K. Kyung, M. J. Kim, Y. Kwon, N. S. Kim,
and J. H. Ahn, “AttAcc! Unleashing the Power of PIM for Batched
Transformer-based Generative Model Inference,” in Proceedings of
the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ser.
ASPLOS ’24. New York, NY, USA: Association for Computing
Machinery, 2024, pp. 103–119, event-place: La Jolla, CA, USA.
[Online]. Available: https://doi.org/10.1145/3620665.3640422

[54] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, “Scheduling techniques for GPU architectures
with processing-in-memory capabilities,” in 2016 International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT), 2016,
pp. 31–44.

[55] B. R. Rau, “Pseudo-randomly interleaved memory,” in Proceedings of
the 18th Annual International Symposium on Computer Architecture,
ser. ISCA ’91. New York, NY, USA: Association for Computing
Machinery, 1991, pp. 74–83, event-place: Toronto, Ontario, Canada.
[Online]. Available: https://doi.org/10.1145/115952.115961

[56] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture, ser. ISCA ’00.
New York, NY, USA: Association for Computing Machinery, 2000, pp.
128–138, event-place: Vancouver, British Columbia, Canada. [Online].
Available: https://doi.org/10.1145/339647.339668

[57] M. Seo, X. T. Nguyen, S. J. Hwang, Y. Kwon, G. Kim, C. Park, I. Kim,
J. Park, J. Kim, W. Shin, J. Won, H. Choi, K. Kim, D. Kwon, C. Jeong,
S. Lee, Y. Choi, W. Byun, S. Baek, H.-J. Lee, and J. Kim, “IANUS:
Integrated Accelerator based on NPU-PIM Unified Memory System,” in
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, ser. ASPLOS ’24. New York, NY, USA: Association for Computing
Machinery, 2024, pp. 545–560, event-place: La Jolla, CA, USA.
[Online]. Available: https://doi.org/10.1145/3620666.3651324

[58] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “RowClone: Fast and energy-efficient in-DRAM bulk data
copy and initialization,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 185–197.

[59] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
in-memory accelerator for bulk bitwise operations using commodity
DRAM technology,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: Association for Computing Machinery, 2017, pp.
273–287, event-place: Cambridge, Massachusetts. [Online]. Available:
https://doi.org/10.1145/3123939.3124544

[60] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “McDRAM:
Low Latency and Energy-Efficient Matrix Computations in DRAM,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[61] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008. [Online]. Available: https://doi.org/10.1038/nature06932

[62] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS:
Balancing Performance, Fairness and Complexity in Memory Access
Scheduling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 10, pp. 3071–3087, 2016.

https://doi.org/10.1145/2818950.2818979
https://doi.org/10.1186/s12864-018-4460-0
https://doi.org/10.1145/3466752.3480103
https://doi.org/10.1145/3466752.3480103
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/mps/index.html
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1145/115952.115961
https://doi.org/10.1145/339647.339668
https://doi.org/10.1145/3620666.3651324
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1038/nature06932


[63] UPMEM, “UPMEM PIM Technical paper,” Aug. 2022. [Online].
Available: https://www.upmem.com/technology/

[64] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu,
“DASH: Deadline-Aware High-Performance Memory Scheduler for
Heterogeneous Systems with Hardware Accelerators,” ACM Trans.
Archit. Code Optim., vol. 12, no. 4, Jan. 2016, place: New York,
NY, USA Publisher: Association for Computing Machinery. [Online].
Available: https://doi.org/10.1145/2847255

[65] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “BigDataBench:
A big data benchmark suite from internet services,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 488–499.

[66] L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, “Sieve:
Scalable In-situ DRAM-based Accelerator Designs for Massively Par-
allel k-mer Matching,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 251–264.

[67] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
implications of the obvious,” SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, Mar. 1995, place: New York, NY, USA
Publisher: Association for Computing Machinery. [Online]. Available:
https://doi.org/10.1145/216585.216588

[68] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, “Processing-in-
Memory Enabled Graphics Processors for 3D Rendering,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 637–648.

[69] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual Channels
and Multiple Physical Networks: Two Alternatives to Improve NoC Per-
formance,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 12, pp. 1906–1919, 2013.

[70] Y. Zhao, M. Gao, F. Liu, Y. Hu, Z. Wang, H. Lin, J. Li, H. Xian,
H. Dong, T. Yang, N. Jing, X. Liang, and L. Jiang, “UM-PIM: DRAM-
based PIM with Uniform & Shared Memory Space,” in 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA),
2024, pp. 644–659.

APPENDIX

A. Abstract

This artifact appendix describes how to reproduce key
results from the paper. The artifact includes a modified version
of the GPGPU-Sim 4.0.1 simulator, the PIM benchmark suite,
and the Rodinia benchmark suite with input data. The modified
GPGPU-Sim implements the baseline and proposed intercon-
nect architecture and memory controller scheduling policies,
along with modifications to some CUDA APIs to provide more
control over concurrent kernel launches. The artifact can be
set up easily using the provided Dockerfile.

B. Artifact check-list (meta-information)
• Algorithm: F3FS, a memory controller scheduling policy.
• Program: GPGPU-Sim, Rodinia benchmark suite, PIM bench-

marks.
• Data set: Modified Rodinia benchmark suite inputs.
• Hardware: Dual core x86-64 based CPU and 8GB memory.
• Metrics: Fairness index, system throughput, number of mode

switches, conflicts per switch, drain latency per switch, LLM
speedup.

• Output: GPGPU-Sim output statistics and plots generated using
matplotlib.

• How much disk space required (approximately)?: 20 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 15 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 2 weeks.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Creative Commons 4.0
• Data licenses (if publicly available)?: Creative Commons 4.0

• Workflow automation framework used?: Docker.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

15164086

C. Description

1) How to access: The artifact is available on both GitHub
and Zenodo at the following links. We recommend using the
Dockerfile to set up the artifact.

• Zenodo: https://zenodo.org/records/15164087
• GitHub:

– Dockerfile: https://gist.github.com/Sacusa/
47801d133eda38317bc8fc84013ed041

– Simulator: https://github.com/Sacusa/
GPGPU-Sim-4.0.1/tree/ISPASS 2025

– Benchmarks: https://github.com/Sacusa/PIM apps/
tree/ISPASS 2025

2) Hardware dependencies: Recent x86-64 based CPU
with at least 2 cores and 8GB memory. There are a total of
3258 simulations, so more cores and memory would help.

3) Software dependencies: This artifact only requires
Docker to run.

4) Data sets: Input data is generated using scripts that come
with the Rodinia benchmark suite.

D. Installation

The steps below detail how to build a Docker image and
start a container for the artifact. This assumes that the user
already has Docker installed.

1) Download the Dockerfile from either GitHub or Zenodo.
2) Navigate to the downloaded file from a terminal and

execute the following :
docker build -t ispass2025:latest .

3) Once the build is complete, start a container by running
the following command:

docker run -i -t --name <name>
ispass2025:latest
Replace <name> with a name for the container. This
command will create a new container and attach to its
terminal.

4) To start the container again in the future, run:
docker start <name>

And connect to it by running:
docker attach <name>

E. Experiment workflow

Navigate to:
/opt/PIM_apps/STREAM

and launch the script:
run_baseline.sh 8

to run the baseline PIM experiments. This will simulate PIM
kernels running alone. Next, navigate to:

/opt/PIM_apps/rodinia_3.1_pim/cuda
and run the script:

launch_ispass2025.sh
to run the baseline Rodinia and LLM experiments, followed
by the competitive and collaborative experiments. While the

https://www.upmem.com/technology/
https://doi.org/10.1145/2847255
https://doi.org/10.1145/216585.216588
https://doi.org/10.5281/zenodo.15164086
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https://zenodo.org/records/15164087
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https://github.com/Sacusa/PIM_apps/tree/ISPASS_2025


results presented in the paper require a total of 3258 simula-
tions, the script can be modified to run a subset of experiments
for faster reproduction of results.

F. Evaluation and expected results

The directory:
/opt/PIM_apps/rodinia_3.1_pim/cuda/scripts
contains plotting scripts to visualize key results from our paper.
Once the simulations finish, the following figures from the
paper can be regenerated using the respective scripts in the
directory:

• Figure 6: plot_mem_arrival_rate.py
• Figure 8a: plot_fairness_index.py
• Figure 8b: plot_throughput.py
• Figure 10a: plot_num_switches.py
• Figures 10b, 10c: plot_switch_overheads.py
• Figure 11: plot_llm_speedup.py

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-and-badging-current
• https://cTuning.org/ae

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
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