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Abstract

In this study, stereo vision was utilized to generate point clouds representing edges during an in-process 3D printing pause. Images
were captured in a grid pattern using a monocular nozzle camera attached to a 3D printer. The images were then converted into
point clouds using RAFT Stereo for creating disparity maps, depth maps, camera intrinsic, 3D printer coordinates, and camera
extrinsic.
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1. Introduction

3D printing, commonly referred to as Fused Filament Fabri-
cation (FFF) and Fused Deposition Modeling (FDM), is a man-
ufacturing process that creates parts by depositing melted mate-
rial, primarily plastic polymers, layer by layer through a heated
nozzle. The process aims to reduce waste compared to tradi-
tional manufacturing processes, making it an attractive method
for producing high-quality products. From its conception, qual-
ity in 3D printing has been a topic of exploration for many or-
ganizations seeking to eliminate waste and utilize the freedom
of utility that 3D printing provides. Defining and measuring
quality can vary among organizations, ranging from a prod-
uct’s appearance to customer satisfaction. Amongst the differ-
ent measurements, an organization may have for quality, quan-
tifying quality with several tools provides insight for effective
decision-making.

“Computer vision is a field of computer science that focuses
on enabling computers to identify and understand objects and
people in images and videos.” (Microsoft, 2023) Within the um-
brella of computer vision, stereo vision is the implementation of
two or more cameras to describe a 3D scene. Concerning stereo
vision, Structure from Motion (SfM) attempts to use camera po-
sitions and movement from a series of images to describe a 3D
scene. In this paper, stereo vision techniques, primarily Struc-
ture from Motion, were used to achieve a 3D reconstruction
model of a printed part by utilizing a nozzle camera attached to
a 3D printer. Key characteristics such as the coordinate position
of our nozzle and camera extrinsic aided in 3D reconstruction.

2. Tools

Within the evaluation, a Voron Switchwire 3D printer uti-
lized a monocular nozzle camera, precisely a 3DO Nozzle Cam-
era. The Voron Switchwire is a Core XZ printer, where the
heated nozzle moves along the XZ plane, running the Klipper
firmware. In addition, the printer deployed the user interface
Mainsail for operation and configuration. The slicing software

Ultimaker Cura aided in generating G-code instructions for the
printer. The 3DO Nozzle Camera is a single-lens camera with
a fixed focus lens, an 80° field of view, and utilizes a Sony
IMX258 image sensor. The image sensor within the camera is
capable of recording 30 frames per second at a 4K resolution
and 60 frames per second at 1080P resolution with an aspect
ratio of 3:4. (KB-3D, 2023) For experimentation, the camera
operated at a resolution of 800 by 600 pixels.

In establishing the process for 3D reconstruction, sev-
eral open-source tools were utilized such as: OpenCV
(OpenCV Contributors, 2023b), mrcal (Kogan, 2023), RAFT
Stereo(Princeton Vision and Learning Lab, 2023), Open3D
(Open3D Contributors, 2023), and printerdata(Pyxis-ROC,
2023). At last, the open-source software CloudCompare
(Miller, 2023) visualized the point cloud 3D reconstruction out-
come.

3. Methodology

In order to perform 3D reconstruction, the nozzle camera’s
focal and world corrdinate system relationship is required. “The
extrinsic matrix is a transformation matrix from the world co-
ordinate system to the camera coordinate system, while the in-
trinsic matrix is a transformation matrix that converts points
from the camera coordinate system to the pixel coordinate sys-
tem.”(Anwar, 2022) The camera intrinsic, illustrated in Equa-
tion (1), is a 3-by-3 matrix made up of the focal lengths ( fx and
fy) and the principal point (cx, cy) of the camera. Focal length
describes “the distance between a cameras lens and physical
sensor” (David, 2019) , as the principal point describe the “op-
tical centers expressed in pixel coordinates.”(OpenCV Contrib-
utors, 2023a) The camera intrinsic are obtainable via a camera
calibration process consisting of taking photos of a chessboard
pattern with a known spacing and vertices. Vertices are the cor-
ners of the chessboard which interact with four squares. For ex-
ample, a six-by-seven patterned chessboard would have vertices
of five-by-six. In obtaining the intrinsic of our nozzle camera,
two samples of over 100 images of a six-by-six chessboard of
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varying chessboard square sizes, 5mm, and 3mm. In identify-
ing the chessboard and its vertices, mrgingham, an open-source
tool used to gather checkerboard locations, and OpenCV pro-
cessed images within the two samples. The data from mrging-
ham transition to mrcal, an advanced camera calibration tool,
to be represented to different lens models. However, the chess-
board data from OpenCV are further processed by the OpenCV
camera calibration feature. fx 0 cx

0 fy cy

0 0 1

 (1)

The camera extrinsic describes the camera position and ro-
tations within a real-world cartesian system through a 4-by-4
matrix consisting of the rotation matrix and translation vec-
tor. As the nozzle camera is fixed in position, the rotation ma-
trix remains constant with the identity matrix. Within stereo
vision, the accumulation of the difference between the loca-
tion of two images amongst the world coordinate system axes
defines the translation vector. Utilizing the tool printerdata,
we can correlate a pair of nozzle camera positions with im-
ages to create a translation vector (tx, ty, tz). The translation
vecotr (tx, ty, tz) can be obtained with Equation (2) using two
coordinates with corresponding and consecutive image pairs,
(x1, y1, z1) and (x2, y2, z2).tx

ty
tz

 =
x2 − x1
y2 − y1
z2 − z1

 (2)

The camera extrinsic with the translation vector (tx, ty, tz) is
illustrated in Equation (3)

1 0 0 tx

0 1 0 ty
0 0 1 tz
0 0 0 1

 (3)

To calculate depth, RAFT Stereo, “a new deep architec-
ture for rectified stereo. . . [utilizing] multi-level convolutional
GRUs” (Lipson et al., 2021), runs consecutive image pairs to
create a disparity map. RAFT-Stereo utilized the pre-trained
Middlebury model. Afterward, the Euclidean distance of co-
ordinates from printerdata correlated with images ran through
RAFT Stereo is calculated. With the disparity map generated by
RAFT Stereo and the Euclidean distance between image pairs,
a depth map can be created by applying Equation (4) across the
dispairty map.

Depth =
fx × Euclidean distance

Disparity
(4)

A series of transformations are applied to our depth informa-
tion to obtain point cloud data. The first transformation converts
the depth map into the camera’s coordinate system (Xc,Yc,Zc)
by taking the location (u, v) within the depth map, the depth
value (d) at (u, v), the principal point, cx and cy, and focal
lengths, fx and fy from the camera intrinsic matrix. Equation

(5) illustrates the transformation of the depth map into the cam-
era’s coordinate system.Xc

Yc

Zc

 =

(b − cx) × ( d

fx
)

(b − cy) × ( d
fy

)
d

 (5)

With (Xc,Yc,Zc) representing coordinates in the camera’s co-
ordinate system, the coordinates are transformed into coordi-
nates (X,Y,Z), a point cloud representation, in the world coor-
dinate system through Equation (6) using the camera extrinsic.

XYZ
 =

1 0 0 tx

0 1 0 ty
0 0 1 tz
0 0 0 1

 ·

Xc

Yc

Zc

1

 (6)

Figure 1: Flowchart of the process in creating point clouds from images

4. Results

The process of camera calibration, which commonly consists
of taking images of a known measurement, is required to obtain
camera intrinsic values such as the focal length and principal
point. In gathering the camera intrinsic values, two image sets
of a six-by-six chessboard pattern were captured. Each image
set consisted of a chessboard pattern of different square sizes
at 3mm and 5mm. An example of the images taken with the
nozzle camera for camera calibration is shown in Figure 2 The
image set with 3 mm-sized squares contained 237 images, while
the other image set with 5 mm-sized squares contained 100 im-
ages. With the mrgingham tool, the checkerboard pattern was
identified in 158 and 42 images of the 3mm and 5mm datasets
respectively. The camera calibration tool mrcal tool processed
results from mrgingham into several camera models to extract
intrinsic parameters such as focal length and principal point.
Results from running mrcal on both image sets are displayed
in Table 1 and Table 2 with the 3mm and 5mm-sized squares
respectively.

In an alternate route, the same samples would be pro-
cessed under OpenCV’s camera calibration Python API. With
OpenCV, the checkerboard pattern was found in 14 and 76 im-
ages in the 5mm and 3mm image sets respectively. The results

2



Figure 2: Camera calibration of the nozzle camera with a chessboard pattern

Lensmodel fx fy cx cy

Pinhole 953.1325 3191.237 396.8969 290.0021
OpenCV12* 1066.512 451.4552 495.9754 4.988957
OpenCV8* 845.0293 568.8355 410.3504 322.2841
OpenCV5* 844.7204 566.999 410.4842 321.728
OpenCV4* 834.1481 570.7482 416.8985 336.5039
Cahvor* 980.9348 567.0836 568.0304 314.7654

* Camera model had additional intrisict values which were
the parameters of their respective model

Table 1: Camera intrinsic generated by different lensmodesl in mrcal from 3mm
chessboard square spacing

Lensmodel fx fy cx cy

Pinhole 867.9742 999.9146 405.121 437.0037
OpenCV12 * 974.6048 1132.425 405.2198 -61.5075
OpenCV8 * 880.9118 1004.712 459.6673 374.1776
OpenCV5 * 876.3786 1007.699 458.1172 387.1971
OpenCV4 * 865.607 1007.484 434.3785 405.1796
Cahvor * 659.7097 753.0182 366.3163 479.9683

* Camera model had additional intrisict values which were
the parameters of their respective model

Table 2: Camera intrinsic generated by different lensmodesl in mrcal from 5mm
chessboard square spacing

from OpenCV occurred from utilizing different units for the ob-
ject spacing parameter used in OpenCV. Results from OpenCV
are illustrated in Tables 3 and 4 below for the 3mm and 5mm-
sized squares respectively. Due to the repeatability of the cam-
era intrinsic from OpenCV of the 5mm-sized squares, the pro-
cess utilized the focal lengths and the principal point for the
intrinsic matrix.

Due to the position of the nozzle camera, the factor of noise
was a major concern for generating point cloud data. The noise
related to the position of the camera is attributed to the fixed lo-
cation of the nozzle and heating chamber across all images. To

Chessboard Square Spacing fx fy cx cy

3mm 12864 1880 347 268
.003m 6900 1233 383 238

Table 3: Camera intrinsic generate by OpenCV from 3mm chessboard square
spacing based on units used within the checkerboard spacing parameter.

Chessboard Square Spacing fx fy cx cy

5mm 892 1042 353 340
.005m 892 1042 353 340

Table 4: OpenCV camera intrinsic from 5mm chessboard square spacing based
on units used within the checkerboard spacing parameter.

measure the influence of the permanent structures in images on
RAFT Stereo, the output disparity of RAFT Stereo was com-
pared amongst image pairs in three different conditions. The
three conditions consisted of utilizing the raw original image,
masking permanent structures(the nozzle and heating cham-
ber), and cropping the first 257 rows of pixels. Under five im-
age pairs, minor standard deviations amongst the three methods
of generating depth information ranged from 0mm to 5mm in
areas where plastic material was deposited as the background
experienced larger standard deviations. Figure 3 is a visual-
ization of the standard deviation of one of the five image pairs
that showcase the minor standard deviation of a 3D printed part.
From these trials, using the raw original images within RAFT
Stereo became standard in the process of 3D reconstruction, and
the elimination of noise from the nozzle would be achieved by
cropping the first 257 rows of the depth map.

Figure 3: Visualizing the Standard Deviation Amongst the Original, Masked,
and Cropped image

In evaluating the process, several sample images were cap-
tured under different conditions of completed and in-process
parts. Image samples captured in a grid-like pattern experienc-
ing slight movement in the x-axis and y-axis utilized the macros
feature present in Klipper firmware. With the Klipper firmware,
scripts, referred to as macros, containing G-code instructions
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(a) Original Image

(b) Masked Image

(c) Cropped Image

Figure 4: An example of processed images used in comparing the output of
RAFT Stereo and depth formulation

can be utilized in the G-code instructions of a part. To cap-
ture photos of a part during printing, a macro was utilized to
move in a grid-like pattern in increments of 3mm in the x and
5mm in the y while hovering 5mm above and 1mm in both the
x and y hovering 0.2 mm above. Some preliminary results from
the alignment of two image pairs, 5 , taken 1 mm apart, RAFT
Stereo disparity, Figure 7, and point cloud generation, Figure 6
, are showcased below . On another note, manual movement of
the nozzle through the Mainsail interface was used to capture
images of a part in 10 mm increments in both the x and y of a
3D printed part on the print bed. From preliminary results, the
process is capable of capturing straight and curved edges along
the x-axis. To reduce the amount of noise, primarily the nozzle,
the point cloud calculation is reduced to calculating the bottom
343 pixels of an image.

5. Discussion

From mrcal and OpenCV, the variation of camera intrinsics
can be attributed to three major factors: the spacing of the
chessboard squares, dataset size, and spread of the chessboard
pattern across the camera’s field of view. Using a chessboard
spacing of 3mm may have possibly led to errors in comput-
ing the camera intrinsic due to the amount of space the pattern

Figure 5: Input images that were taken 1mm apart from each other

Figure 6: Disparity map generated with RAFT Stereo from image pair in Figure
5

covered in the camera’s perspective in comparison to the 5mm
spaced chessboard. On another hand, the possibility of utiliz-
ing too many images in computing the camera intrinsic may
have contributed to a variation of results as the trial which uti-
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Figure 7: Point Cloud Generated from Disparity Map in Figure 6

lized the least number of images produced repeatable figures.
Finally, the location of the chessboard pattern in the lower por-
tions of the camera’s perspective may have contributed the most
to the variation of camera intrinsic due to the lack of distribution
throughout the image pixel locations as illustrated in Figure 9
showcassing the spread of the chessboard pattern vertices from
the 3mm dataset images.

Figure 8: mrcal visualization of the spread of chessboard vertices

Transitioning the current pipeline into a real-time application
will have difficulties in computational time from RAFT-Stereo
alone. Figure 5 illustrates the vast computational time from the
different models which are used within a series of sample im-
ages. The hardware processing RAFT Stereo within the process
currently is a major attribution to the problem of computational

time as RAFT Stereo is intended to run on NVIDIA GPUs over
standard Intel CPUs. Applying the fastest model within RAFT
Stereo would be a subject for future work as it utilizes multi-
ple parameters which require experimentation to optimize the
quality of disparity and speed.

Training Model Image Pair Processing Times (s)
middlebury 1 136
middlebury 2 136
middlebury 3 137
middlebury 4 131
middlebury 5 137
sceneflow 1 141
sceneflow 2 133
sceneflow 3 133
sceneflow 4 132
sceneflow 5 134
eth3d 1 99
eth3d 2 105
eth3d 3 105
eth3d 4 103
eth3d 5 128
realtime0-full-image 1 7
realtime0-full-image 2 7
realtime0-full-image 3 7
realtime0-full-image 4 7
realtime0-full-image 5 7

Table 5: Computational Times of the Different Models Utilized by RAFT
Stereo

Out-of-place point clouds are a noticeable issue within the
3D reconstruction process. For example, Figure 9b showcases
portions of the point cloud sticking out sorely beyond the range
of our scene. The main cause of out-of-place can be attributed
to the disparity maps generated by RAFT Stereo. Within the
complementary figure, Figure 9a, the disparity map is shown to
be distinct in its position in comparison to its surrounding as
we expected it to share similar characteristics from looking at
raw images. The bottom left corner of the RAFT disparity map
showcases a red region which emphasizes a heavy disparity.
This outcome is highly unexpected as the difference between
the two images used is one millimeter in the x-axis.

6. Future Work

Stress testing the capabilities and ability of the process to
properly represent the part is an area of future work of main in-
terest as ultimately unit measurements would like to be obtained
within a 3D reconstruction model. The test images that have
been utilized within this evaluation were of flat and simplistic
parts which lacked complex shapes. In evaluating the process
with complex shapes, the process becomes one step closer to a
real-time application as a realistic complex part will stress the
current process. On another hand, if the process continues expe-
riencing issues in representing simplistic parts, the process will
require a re-evaluation of how it processes data and generates
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(a) RAFT Stereo Disparity Map

(b) Point cloud with an error displayed in Open3D

Figure 9: Flaws of the process within RAFT-Stereo generated disparity map
and Point Cloud

point clouds. However, another subject of future work can en-
hance the ability of the process in representing a part accurately.
Currently, the process can generate a multitude of point clouds
from depth maps gathered from disparity maps generated from
consecutive image pairs. However, there is no feature matching
within the current process amongst multiple point clouds. Im-
plementing feature matching within the process will reduce the
number of point clouds generated by correlating corresponding
points and overlaps across point clouds. In addition, feature
matching will help in representing a part more accurately and
aid in capturing infill patterns. The primary methods of feature
matching to implement in the process in future work would fo-
cus on feature matching in images through algorithms like SIFT
and ORB and in point cloud geometry across voxels.

On another note, the correlation between coordinates gener-
ated from printerdata and images was processed manually in
extracting points that did not correlate to images. Future work
would entail automating and enhancing the correlation between
the output of printerdata with images. Automating this process
would allow for an easier transition into processing videos as
we could assign a coordinate value to a frame appropriately.
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