Analyzing Program Behavior with Cross Layer

Introduction

Programs are highly measurable objects

® The code itself can be measured

e Various performance measurements can be taken

e How the program is executed can be recorded (program
traces, memory traces)

These measurements are highly connected

e Performance measurements happen during the execution of
the binary code

e The binary that is being executed is derived from source
code

e These points identify the two ways we analyze software:
runtime and static behavior

These measurable aspects of programs, we call

program behavior

e Practically any measurable aspect of a program

e Dynamic Information such as cache performance, or,
memory /register traces

e Static information such as source code, abstract syntax
trees, or disassembly

There are existing tools that measure certain
program behaviors

® cachegrind, drcachesim can measure cache behavior during
runtime

® valgrind, drmemory can detect memory safety errors during
runtime

e TEMU, BitBlaze can generate instruction and memory
traces by emulating the program

Motivation

Current tooling is inconsistent, and requires custom
code to interpret and merge results

Tooling becomes specialized to specific analyses and
becomes difficult to reuse

Methodology

We propose a new framework for the representation

and querying of program behavior
This is designed with a few important goals in mind

e Bring together tooling into one unified representation that
can be reused throughout various analyses
e Allow for all queries to be written in a single query language

Connect static information and dynamic behaviors
of a program into one labeled graph

Allow queries on the graph to facilitate behavioral
evaluation using a query language

Use static information to augment dynamic
behaviors for analysis

Files ELF Disassembler
v v v
ppoadoeRRABRA1ITEA =es
data +
‘L Fl + eop
| ||| -text .d
DWARF
project/|
DW_TAG_CU DW_AT Location [—» DW_OFP_fbreg -4
r‘ \T ‘L] A|—> DW_AT Name | argv
DW_TAG_ Function
src.c binary .L j
DW TAG Variable
TAG
Instruction Trace Memory Trace Hit Miss Trace

Ax7ffff3cfle3s ——————® ex7fffffffddls

Bx7EfFf3cfle3d ———————— ¥ @x7ffff6e377594

AxTTfff3cfledl ————————» ex7fffffffddls

Figure 1: Visualization of a PBG

Deriving Graphs

Graph nodes are derived from existing tools

Graph labels are picked based on the semantic

relationship between information

DynamoRIO used to dynamically instrument binaries
to collect runtime information

® |nstruction Traces

e Memory Traces
o Allocation Traces (malloc/free/realloc/calloc)
Traces require a notion of time in the graph:

® Program counters aren't sufficient representation of time:
they are reused in loops and functions called more than once

Information

Avi Saven?

"University of Rochester

e Rather, temporal nodes are added to the graph: a
monotonically increasing node with connections to trace
information to give a time reference

e Uses Capstone [5] to generate the disassembly of a
dinary

e Imports DWARF information into the graph for
type/function/source and assembly conversion

information

e All items become interconnected in the

labeled graph:

e (Cache misses and memory allocations, are connected to a
temporal counter in the graph

e Temporal counters are connected with the instruction and
memory trace in the graph

® Program counters are associated with source and type
information

e (Cross-layer information becomes connected by their
semantic relationships.

e Analyses which required custom tooling and
instrumentation now are queries on a graph.

Querying Graphs

e With this framework we can answer questions about

the behavior of our programs using queries

e Several query languages exist for exploring relational
data
® Gizmo [6] is an ES5 JavaScript-based query language,
provided natively by the utilized graph database Cayley [6]
e Soufflé [7] is an implementation of Datalog, which is a
subset of Prolog used for databases and static analysis, it
requires an export of the graph to Datalog facts

Case Study #1

e TCC is a small, self-hosting, C compiler by Fabrice
Bellard

e Using a PBG, can we answer the question: what line

of TCC has the worst cache performance?
e Traditionally, this is done by programs such as
cachegrind or drcachesim
e However, these are specialized utilities, and it's difficult to
reuse the data produced by these tools
e Additionally, they may require more tooling to answer more
specific questions
e \We can answer this question using a PBG:
e (Cache trace, instruction trace, disassembly, and, source
code are in the graph
e Finding which line has the worst performance becomes a

query on the graph
e (Can be trivially extended to ask more questions about the
cache performance

® Such as: which function has the worst cache performance? which
type has the worst cache performance?

Case Study #2

e Valgrind [4] is a runtime analysis utility for finding
memory safety errors

e \What information does Valgrind use?
® |nstruction trace: What instructions are executed, and when
e Memory trace: What memory addresses are accessed, and

when
e Allocation trace: What memory is allocated, and when

® These are all pieces of information already in the

PBG

e We can check for memory errors and leaked memory
through a query on the PBG

e Note: not at runtime, rather, is a post-mortem check for
memory errors

e Additionally, because the analysis only a query, we

can extend it to include new information:
e Useless Reallocations
e Memory is often grown/extended in anticipation of new data being
added
e However, if it is grown and not written to, then the growth was a
waste
e By a small extension to our query, we can catch instances of this

Results

e T[ests were run a server with the following
configuration:

e CPU: AMD Ryzen Threadripper 2950 @ 2.2GHz
e RAM: 32GB
e HDD: TOSHIBA MGO3ACA4 4TB 7200RPM Disk

e [ests were executed on the following selection of
software
® basic: demo program for source/binary validation (6 LOC)
® basic_malloc: demo program for memory allocation issues

(8 LOC)
e structs: demo program for DWARF validation (12 LOC)
e tcc_forth: a TCC compilation of a small Forth interpreter
by Leif Bruder. (1124 LOC)
o sqlite3: a TCC compilation of SQLite 3 (228449 LOC)

e T[he testing was executed in three stages on each

program

e First, the PBGs were formed (stage ¢)

e Secondly, a datalog export was made (stage d)

e Thirdly, a query is run on the exported datalog to detect
memory issues (stage q)

e Time spent in userspace, average/maximum memory usage
is collected for each stage

Figure 2: Time of PBG

10 g - -

103 3

time (s)
|

102 8 -]

- o

basic basic_malloc structs tcc_forth sqlite3

Ic time (s)/ld time (s)!!q time (s)

Figure 3: Memory usage of PBG

107 g

memory (kB)

W

basic basic_malloc structs tcc_forth sqlite3

lc max. mem (kB)!ld max. mem (kB)!q max. mem (kB)

Conclusion

e We're able to correlate cross-layer information into a
single unified representation

e Using the unified representation, it is possible to
execute analyses through queries on the graph, in
order to answer questions without new tools

® |ssues come from scale:

e |arge program execution generates lots of information,
which leads to performance issues in generating and
querying PBGs

e In the future, it would be beneficial to time/space if
we can take information out of the graph and derive

It at query time.

References

[1] https://bellard.org/tcc/
[2] http://dynamorio.org/dynamorio_ docs/page__
drcachesim.html

[3] Song, Dawn, et al. "BitBlaze: A new approach to computer
security via binary analysis." International Conference on
Information Systems Security. Springer, Berlin, Heidelberg,

2008.

[4] Nethercote, Nicholas, and Julian Deward. "Valgrind: a

framework for heavyweight dynamic binary instrumentation.
ACM Sigplan notices 42.6 (2007): 89-100

5] http://www.capstone-engine.org
6] https://cayley.io

7] Jordan, Herbert, Bernhard Scholz, and Pavle Suboti¢. "Soufflé:

On synthesis of program analyzers." International Conference
on Computer Aided Verification. Springer, Cham, 2016.

Undergraduate Research Competition, April 17th 2020, Rochester, NY

https://bellard.org/tcc/
http://dynamorio.org/dynamorio_docs/page_drcachesim.html
http://dynamorio.org/dynamorio_docs/page_drcachesim.html
http://www.capstone-engine.org
https://cayley.io

