
CSC2/452 Computer Organization
Bits and Integers

Sreepathi Pai

URCS

September 7, 2022

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Announcements

I Course website now has office hours for all TAs
I Link to course website announced on Blackboard

I I plan to hold review sessions during lecture hours before the
mid-term and final exam
I Cellphones and/or Laptops will be required
I If you do not want to use cellphones/laptops, please talk to me

after class for options

I HW1 released today.
I I have printouts with me that you can take.
I Or you can find it on Blackboard.

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Real World Data

I Numbers

I Text

I Pictures

I Audio

I Scents

I ...

Most can be encoded as numbers

Building Blocks of the Digital Universe

And most numbers can be encoded as binary digits (or bits),
consisting of the values 0 and 1.

Bits in the Physical World

I In classical computers, usually voltages

I HIGH voltage indicates 1, LOW voltage indicates 0
I Actual voltages depend on logic family

I for TTL, (VCC) 5V: 0-0.8V is LOW, and 2V-5V is HIGH
I for CMOS, much wider range, but 5V and 3.3V common

I In quantum computers, other weird phenomena
I Read The Talk, if interested

https://www.smbc-comics.com/comic/the-talk-3

Bits can be anything, really

Courtesy: Prof. Adrian Sampson

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Functions of 1 input (unary functions)

I ZERO (output is always zero)

Input Output

0 0

1 0

I ONE (output is always one)

Input Output

0 1

1 1

Functions of 1 input (contd.)

I IDENTITY (output is always equal to input)

Input Output

0 0

1 1

I INVERSE (or NOT) (output is inverse of input)

Input Output

0 1

1 0

I There are only four unary bitwise functions (or operations).

I Bitwise functions are also called boolean functions

Functions of 2 inputs (binary functions)

I ZERO

a b Output

0 0 0

0 1 0

1 0 0

1 1 0

I ONE

a b Output

0 0 1

0 1 1

1 0 1

1 1 1

I Note that ONE is essentially NOT (ZERO(a, b))

Truth Tables and Boolean Functions

I The tables in the previous slides are called “Truth tables”
I the textbook uses a slightly more compact form

I If there are I inputs, a truth table has R = 2I rows
I If the output is a single bit, then there are F = 2R different

outputs
I This is also the total number of boolean functions of I inputs
I e.g., I = 1→ R = 21 → F = 22 = 4
I e.g., I = 2→ R = 22 → F = 222 = 16

I Half of these functions can be obtained by inverting the other
half

AND

I AND outputs 1 only when both inputs are 1

a b Output

0 0 0

0 1 0

1 0 0

1 1 1

OR

I OR outputs 1 if either input is 1
I hence, “inclusive or”
I not how it is used in English!

a b Output

0 0 0

0 1 1

1 0 1

1 1 1

XOR

I XOR, 1 only when exactly one of its input is 1
I hence, “exclusive or”
I pronounced “ecks-or” (i.e. x-or) or “zor”
I I prefer the latter...

a b Output

0 0 0

0 1 1

1 0 1

1 1 0

NAND and NOR

I NAND = NOT (AND(a, b))

a b Output

0 0 1

0 1 1

1 0 1

1 1 0

I NOR = NOT (OR(a, b))

a b Output

0 0 1

0 1 0

1 0 0

1 1 0

I NAND and NOR are universal gates
I Can be used to implement any boolean function

Examples of NAND

I What should ? be in the following examples to make LHS =
RHS?
I NOT (a) = NAND(a, ?)
I AND(a, b) = NAND(NAND(a, b), ?)
I OR(a, b) =?

Generalizing to inputs longer than one bit

I Inputs longer than one bit are called:
I bit vectors
I bit strings
I or more specific names for particular names (e.g. 8 bits = byte)

b7 b6 b5 b4 b3 b2 b1 b0
0 1 0 1 1 0 0 1

AND 0 1 1 1 0 1 1 0

0 1 0 1 0 0 0 0

I Each bit in the first 8-bit input is ANDed to its corresponding
bit in the second input

I The AND operates on each pair of bits separately

Logic and Boolean Algebra

I Logical variables take only values TRUE and FALSE
I Logical operations are operations on these values

I e.g., “Not True = False”

I Systematized by George Boole in 1847
I Later expounded in The Laws of Thought, 1854

I Claude Shannon connected boolean algebra to digital circuit
design
I Originally, to design circuits that used electromechanical relays

as switches
I Now digital circuits use transistors, but principles are the same
I Also coined the word “bit” later...

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bits, Bytes, Words, ...

I Almost no machine allows manipulation of single bits directly

I Bits are handled as aggregations

Size (bits) Common Name

8 byte
16 word, halfword
32 word, doubleword
64 word, doubleword, quadword

128 ?

I A machine word (sometimes the word “machine” is omitted)
is the size (in bits) of data that a machine can manipulate at
once.
I Hence 16-bit machines, 32-bit machines, 64-bit machines, etc.

Reading a byte

b7 b6 b5 b4 b3 b2 b1 b0
0 1 1 0 1 1 0 1
27 26 25 24 23 22 21 20

I In place-value notation, b0 = 1 and b7 = 27 = 128
I Hence, this is 1× 26 + 1× 25 + 1× 23 + 1× 22 + 1× 20 = 109

I The grouping of 4 bits together is called a nybble (i.e. half a
byte)
I Primarily improves readability
I But can also be used to easily convert to base-16 (i.e.

hexadecimal)

I b0 (i.e. rightmost bit) is called the least significant bit (LSB)
I contributes the smallest value (20)

I b7 (i.e. leftmost bit) is called the most significant bit (MSB)
I contributes the most value (27)

Hexadecimal

I Numbers in base 16
I 0 to 9 and A to F
I Usually indicated by a 0x prefix, or a 16 subscript
I e.g., 0xA = A16 = 1010 = 10102

I 10910 = 0110 11012 = 0x6D

I Textbook contains a table mapping the 16 nybbles to
hexadecimal symbols

I Hexadecimal is widely used in low-level code
I you’ll get plenty of opportunities to practice

Multibyte Data Types and Memory Layout

I The 16-bit value 5199610 has hexadecimal representation
0xCAFE
I Its binary representation is 1100 1010 1111 11102

I The value 0xCA is its most significant byte
I The value 0xFE is its least significant byte

I RAM is byte addressable
I Can read individual bytes of a multibyte value
I How should we order each byte of a multibyte value?

Little and Big-endian

I Storing a 32-bit value 0xDEADCAFE in memory

I Big endian: Most significant byte at lower addresses

I Little endian: Least significant byte at lower addresses

address x x + 1 x + 2 x + 3

big-endian 0xDE 0xAD 0xCA 0xFE
little-endian 0xFE 0xCA 0xAD 0xDE

I Different machines use different conventions
I Intel/AMD usually little endian
I SPARC/PowerPC usually big endian
I ARM can switch between the two

I Big endian is sometimes called network byte order
I Similar problem: which byte of a word gets on the wire first?

The Interpreter of Bits

I Does the byte 0x55 in memory indicate:
I The integer value 85?
I The Intel assembly language instruction push %rbp (as seen in

the previous lecture)?

I There is nothing in 0x55 that can distinguish between these
two interpretations
I Very powerful idea
I Code can be data and data can be code

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Integers

I The most common interpretation of bytes, words, etc. is that
as “integers”
I Whole numbers (no fractional part)
I Can be positive or negative

I Examples: -3, -2, -1, 0, 1, 2, 3

Problem to be solved

I Need to store the magnitude of the integer
I i.e. absolute value (e.g. | − 2| = 2)

I Need to store sign of the integer

How many bits are required?

I The number of bits required to store N distinct values is
dlog2(N)e
I i.e. logarithm of N to the base 2
I i.e. find x such that 2x = N, and round it up

I Example #1: There are two possible values for sign, so N = 2
I log2(2) = 1, so one bit is required to store sign

I Example #2: If N is 200, then x = log2(200) = 7.644, so 8
bits are required

Stuffing numbers into a byte: Sign-Magnitude

I A byte has 8 bits

I One bit is used for the sign, 7 bits left

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit

I Let other bits store magnitude

I Can store numbers from -127 to +127

b7 b6 b5 b4 b3 b2 b1 b0
+8910 0 1 0 1 1 0 0 1
−8910 1 1 0 1 1 0 0 1

010 0 0 0 0 0 0 0 0
−010 1 0 0 0 0 0 0 0

Stuffing numbers into a byte: One’s Complement

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit
I Let other bits store magnitude

I except if sign bit is set, magnitude must be complemented
(i.e. inverted) to get actual value

I one’s complement of bit value x is 1− x , i.e. the same as
NOT (x)

I Represents numbers from −127 to +127

b7 b6 b5 b4 b3 b2 b1 b0
+8910 0 1 0 1 1 0 0 1
−8910 1 0 1 0 0 1 1 0

010 0 0 0 0 0 0 0 0
−010 1 1 1 1 1 1 1 1

Stuffing numbers into a byte: Two’s Complement

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit
I Let other bits store magnitude

I To negate a number, complement all its bits and add 1

I Can store numbers from -128 to 127
b7 b6 b5 b4 b3 b2 b1 b0

+8910 0 1 0 1 1 0 0 1
−8910 1 0 1 0 0 1 1 1

010 0 0 0 0 0 0 0 0
−010 0 0 0 0 0 0 0 0
−12810 1 0 0 0 0 0 0 0

Integer Representations

I There is more than one way to represent the same integer
I Sign-magnitude
I One’s complement
I Two’s complement

I Some of them are non-intuitive
I negative and positive zeroes
I asymmetric ranges [-128, 127]

I All of them have different hardware implications
I Addition and subtraction circuits differ

I Generally, most computers you will encounter use
two’s-complement arithmetic

Integers in C

I Basic C types:
char a;
short b; /* alternative form: short int */
int c;
long d; /* alternative form: long int */
long long e;

I C implementations are required to provide a minimum size for
each type
I char must be at least 8 bits
I int must be at least 16 bits
I long must be at least 32 bits
I long long must be at least 64 bits

I The prefix unsigned (e.g. unsigned char) allows all bits to
be used to store the magnitude (i.e. there is no sign bit).
I char must be able to store [−127, 127]
I unsigned char must be able to store [0, 255]
I Note C does not require machines implement two’s

complement (yet)

Fixed-width Integers in C99

#include <stdint.h>
int8_t a; /* signed 8-bit integer */
uint8_t ua; /* unsigned 8-bit integer */

int32_t b; /* signed 32-bit integer */
uint32_t ub; /* unsigned 32-bit integer */

...

I C99 is the C standard “version” 1999.
I Finally allowed fixed-width types
I Still does not mandate any particular representation

I The variables INT8 MIN and INT8 MAX contain the range for
int8 t
I similarly, UINT8 MIN and UINT8 MAX contain the range

uint8 t

Summary

I Bits

I Functions operating on bits

I Multibit values and machine data types

I Storing Integers

I C Data Types

References and Next Class

I Today: Chapter 2 of the textbook
I Next class: Chapter 2 of the textbook

I Data conversions
I Bitwise Operations
I Integer arithmetic

	Administrivia
	Introduction
	Bits, Functions and Boolean Algebra
	Machine Data Types
	Interpreting Bits as Integers

