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Announcements

I Course website now has office hours for all TAs
I Link to course website announced on Blackboard

I I plan to hold review sessions during lecture hours before the
mid-term and final exam
I Cellphones and/or Laptops will be required
I If you do not want to use cellphones/laptops, please talk to me

after class for options

I HW1 released today.
I I have printouts with me that you can take.
I Or you can find it on Blackboard.
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Real World Data

I Numbers

I Text

I Pictures

I Audio

I Scents

I ...

Most can be encoded as numbers



Building Blocks of the Digital Universe

And most numbers can be encoded as binary digits (or bits),
consisting of the values 0 and 1.



Bits in the Physical World

I In classical computers, usually voltages

I HIGH voltage indicates 1, LOW voltage indicates 0
I Actual voltages depend on logic family

I for TTL, (VCC ) 5V: 0-0.8V is LOW, and 2V-5V is HIGH
I for CMOS, much wider range, but 5V and 3.3V common

I In quantum computers, other weird phenomena
I Read The Talk, if interested

https://www.smbc-comics.com/comic/the-talk-3


Bits can be anything, really

Courtesy: Prof. Adrian Sampson
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Functions of 1 input (unary functions)

I ZERO (output is always zero)

Input Output

0 0

1 0

I ONE (output is always one)

Input Output

0 1

1 1



Functions of 1 input (contd.)

I IDENTITY (output is always equal to input)

Input Output

0 0

1 1

I INVERSE (or NOT) (output is inverse of input)

Input Output

0 1

1 0

I There are only four unary bitwise functions (or operations).

I Bitwise functions are also called boolean functions



Functions of 2 inputs (binary functions)

I ZERO

a b Output

0 0 0

0 1 0

1 0 0

1 1 0

I ONE

a b Output

0 0 1

0 1 1

1 0 1

1 1 1

I Note that ONE is essentially NOT (ZERO(a, b))



Truth Tables and Boolean Functions

I The tables in the previous slides are called “Truth tables”
I the textbook uses a slightly more compact form

I If there are I inputs, a truth table has R = 2I rows
I If the output is a single bit, then there are F = 2R different

outputs
I This is also the total number of boolean functions of I inputs
I e.g., I = 1→ R = 21 → F = 22 = 4
I e.g., I = 2→ R = 22 → F = 222 = 16

I Half of these functions can be obtained by inverting the other
half



AND

I AND outputs 1 only when both inputs are 1

a b Output

0 0 0

0 1 0

1 0 0

1 1 1



OR

I OR outputs 1 if either input is 1
I hence, “inclusive or”
I not how it is used in English!

a b Output

0 0 0

0 1 1

1 0 1

1 1 1



XOR

I XOR, 1 only when exactly one of its input is 1
I hence, “exclusive or”
I pronounced “ecks-or” (i.e. x-or) or “zor”
I I prefer the latter...

a b Output

0 0 0

0 1 1

1 0 1

1 1 0



NAND and NOR

I NAND = NOT (AND(a, b))

a b Output

0 0 1

0 1 1

1 0 1

1 1 0

I NOR = NOT (OR(a, b))

a b Output

0 0 1

0 1 0

1 0 0

1 1 0

I NAND and NOR are universal gates
I Can be used to implement any boolean function



Examples of NAND

I What should ? be in the following examples to make LHS =
RHS?
I NOT (a) = NAND(a, ?)
I AND(a, b) = NAND(NAND(a, b), ?)
I OR(a, b) =?



Generalizing to inputs longer than one bit

I Inputs longer than one bit are called:
I bit vectors
I bit strings
I or more specific names for particular names (e.g. 8 bits = byte)

b7 b6 b5 b4 b3 b2 b1 b0
0 1 0 1 1 0 0 1

AND 0 1 1 1 0 1 1 0

0 1 0 1 0 0 0 0

I Each bit in the first 8-bit input is ANDed to its corresponding
bit in the second input

I The AND operates on each pair of bits separately



Logic and Boolean Algebra

I Logical variables take only values TRUE and FALSE
I Logical operations are operations on these values

I e.g., “Not True = False”

I Systematized by George Boole in 1847
I Later expounded in The Laws of Thought, 1854

I Claude Shannon connected boolean algebra to digital circuit
design
I Originally, to design circuits that used electromechanical relays

as switches
I Now digital circuits use transistors, but principles are the same
I Also coined the word “bit” later...
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Bits, Bytes, Words, ...

I Almost no machine allows manipulation of single bits directly

I Bits are handled as aggregations

Size (bits) Common Name

8 byte
16 word, halfword
32 word, doubleword
64 word, doubleword, quadword

128 ?

I A machine word (sometimes the word “machine” is omitted)
is the size (in bits) of data that a machine can manipulate at
once.
I Hence 16-bit machines, 32-bit machines, 64-bit machines, etc.



Reading a byte

b7 b6 b5 b4 b3 b2 b1 b0
0 1 1 0 1 1 0 1
27 26 25 24 23 22 21 20

I In place-value notation, b0 = 1 and b7 = 27 = 128
I Hence, this is 1× 26 + 1× 25 + 1× 23 + 1× 22 + 1× 20 = 109

I The grouping of 4 bits together is called a nybble (i.e. half a
byte)
I Primarily improves readability
I But can also be used to easily convert to base-16 (i.e.

hexadecimal)

I b0 (i.e. rightmost bit) is called the least significant bit (LSB)
I contributes the smallest value (20)

I b7 (i.e. leftmost bit) is called the most significant bit (MSB)
I contributes the most value (27)



Hexadecimal

I Numbers in base 16
I 0 to 9 and A to F
I Usually indicated by a 0x prefix, or a 16 subscript
I e.g., 0xA = A16 = 1010 = 10102

I 10910 = 0110 11012 = 0x6D

I Textbook contains a table mapping the 16 nybbles to
hexadecimal symbols

I Hexadecimal is widely used in low-level code
I you’ll get plenty of opportunities to practice



Multibyte Data Types and Memory Layout

I The 16-bit value 5199610 has hexadecimal representation
0xCAFE
I Its binary representation is 1100 1010 1111 11102

I The value 0xCA is its most significant byte
I The value 0xFE is its least significant byte

I RAM is byte addressable
I Can read individual bytes of a multibyte value
I How should we order each byte of a multibyte value?



Little and Big-endian

I Storing a 32-bit value 0xDEADCAFE in memory

I Big endian: Most significant byte at lower addresses

I Little endian: Least significant byte at lower addresses

address x x + 1 x + 2 x + 3

big-endian 0xDE 0xAD 0xCA 0xFE
little-endian 0xFE 0xCA 0xAD 0xDE

I Different machines use different conventions
I Intel/AMD usually little endian
I SPARC/PowerPC usually big endian
I ARM can switch between the two

I Big endian is sometimes called network byte order
I Similar problem: which byte of a word gets on the wire first?



The Interpreter of Bits

I Does the byte 0x55 in memory indicate:
I The integer value 85?
I The Intel assembly language instruction push %rbp (as seen in

the previous lecture)?

I There is nothing in 0x55 that can distinguish between these
two interpretations
I Very powerful idea
I Code can be data and data can be code
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Integers

I The most common interpretation of bytes, words, etc. is that
as “integers”
I Whole numbers (no fractional part)
I Can be positive or negative

I Examples: -3, -2, -1, 0, 1, 2, 3



Problem to be solved

I Need to store the magnitude of the integer
I i.e. absolute value (e.g. | − 2| = 2)

I Need to store sign of the integer



How many bits are required?

I The number of bits required to store N distinct values is
dlog2(N)e
I i.e. logarithm of N to the base 2
I i.e. find x such that 2x = N, and round it up

I Example #1: There are two possible values for sign, so N = 2
I log2(2) = 1, so one bit is required to store sign

I Example #2: If N is 200, then x = log2(200) = 7.644, so 8
bits are required



Stuffing numbers into a byte: Sign-Magnitude

I A byte has 8 bits

I One bit is used for the sign, 7 bits left

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit

I Let other bits store magnitude

I Can store numbers from -127 to +127

b7 b6 b5 b4 b3 b2 b1 b0
+8910 0 1 0 1 1 0 0 1
−8910 1 1 0 1 1 0 0 1

010 0 0 0 0 0 0 0 0
−010 1 0 0 0 0 0 0 0



Stuffing numbers into a byte: One’s Complement

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit
I Let other bits store magnitude

I except if sign bit is set, magnitude must be complemented
(i.e. inverted) to get actual value

I one’s complement of bit value x is 1− x , i.e. the same as
NOT (x)

I Represents numbers from −127 to +127

b7 b6 b5 b4 b3 b2 b1 b0
+8910 0 1 0 1 1 0 0 1
−8910 1 0 1 0 0 1 1 0

010 0 0 0 0 0 0 0 0
−010 1 1 1 1 1 1 1 1



Stuffing numbers into a byte: Two’s Complement

I Can store magnitudes from 0 to 27 = 127

I Let MSB be sign bit
I Let other bits store magnitude

I To negate a number, complement all its bits and add 1

I Can store numbers from -128 to 127
b7 b6 b5 b4 b3 b2 b1 b0

+8910 0 1 0 1 1 0 0 1
−8910 1 0 1 0 0 1 1 1

010 0 0 0 0 0 0 0 0
−010 0 0 0 0 0 0 0 0
−12810 1 0 0 0 0 0 0 0



Integer Representations

I There is more than one way to represent the same integer
I Sign-magnitude
I One’s complement
I Two’s complement

I Some of them are non-intuitive
I negative and positive zeroes
I asymmetric ranges [-128, 127]

I All of them have different hardware implications
I Addition and subtraction circuits differ

I Generally, most computers you will encounter use
two’s-complement arithmetic



Integers in C

I Basic C types:
char a;
short b; /* alternative form: short int */
int c;
long d; /* alternative form: long int */
long long e;

I C implementations are required to provide a minimum size for
each type
I char must be at least 8 bits
I int must be at least 16 bits
I long must be at least 32 bits
I long long must be at least 64 bits

I The prefix unsigned (e.g. unsigned char) allows all bits to
be used to store the magnitude (i.e. there is no sign bit).
I char must be able to store [−127, 127]
I unsigned char must be able to store [0, 255]
I Note C does not require machines implement two’s

complement (yet)



Fixed-width Integers in C99

#include <stdint.h>
int8_t a; /* signed 8-bit integer */
uint8_t ua; /* unsigned 8-bit integer */

int32_t b; /* signed 32-bit integer */
uint32_t ub; /* unsigned 32-bit integer */

...

I C99 is the C standard “version” 1999.
I Finally allowed fixed-width types
I Still does not mandate any particular representation

I The variables INT8 MIN and INT8 MAX contain the range for
int8 t
I similarly, UINT8 MIN and UINT8 MAX contain the range

uint8 t



Summary

I Bits

I Functions operating on bits

I Multibit values and machine data types

I Storing Integers

I C Data Types



References and Next Class

I Today: Chapter 2 of the textbook
I Next class: Chapter 2 of the textbook

I Data conversions
I Bitwise Operations
I Integer arithmetic
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