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Stuff from previous lectures that we’ll need today

I Bits: 0 and 1
I Unary functions: NOT
I Binary functions: AND, OR, XOR, NAND, NOR, ...
I Defined for inputs of 1 bit
I Extensible to bit vectors and bit strings

I Machine data types
I Byte (8 bits) smallest unit
I Usually go up to 64 bits

I Integers
I Sign-Magnitude, One’s complement, Two’s Complement, ...

I C Mapping of Types
I machine-dependent sizes: char, int, ...
I machine-independent sizes: uint8 t, uint16 t, ...
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Mathematical Sets

I P = {2, 3, 5, 7, 11, ...}
I O = {1, 3, 5, 7, 9, 11, 13, ...}
I Operations on mathematical sets:

I Membership: 9 ∈ P?
I Union: P ∪ O
I Intersection: P ∩ O
I Complement: Ō = O ′ = {2, 4, 6, 8, ...} (assuming U = N+)
I Difference: P − {2}
I Symmetric Difference: P ⊕ O = {1, 2, 9, ...} (elements in

either set but not both)



Bitsets

I Suppose you want to store two pieces of information ...
I On/Off
I Absent/Present
I Enable/Disable
I etc.

I about N different items simultaneously
I Example: Days of the week that I am available to meet

I information: available/not available
I 7 items: Sun, Mon, Tue, Wed, Thu, Fri, Sat

I How should we encode this information?
I not using dlog2(7)e bits!
I That’s for storing 1 of N different values



Constructing Bitsets

b6 b5 b4 b3 b2 b1 b0
1 0 1 1 0 0 1

SAT FRI THU WED TUE MON SUN

I Use 1 bit per day, total 7 bits
I If bit x is set to 1 then I’m available on day mapped to bit x

I Interpretation matters: 1 could also be used to mean
unavailable (and then 0 would be available)

I We will use 1 for available, 0 for unavailable



Constructing Bitsets in C

enum DOW_BITS {
SUN = 1, /* bit 0 */
MON = 2,
TUE = 4,
WED = 8,
THU = 16,
FRI = 32,
SAT = 64 /* bit 6 */

};

Another common option for defining constants in C:

I #define SUN 1 (avoid for new code)



C bitwise operations

I Bitwise NOT (a) is ~a

I Bitwise AND(a, b) is a & b

I Bitwise OR(a, b) is a | b

I Bitwise XOR(a, b) is a ^ b

Do not confuse bitwise operators with logical/boolean operators
which are !, &&, ||, described later in this lecture.



Marking availability

I Marking availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

mark 0 0 0 0 1 1 0

availability (after) 0 0 0 0 1 1 0



Marking availability (in code)

I Marking availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

mark 0 0 0 0 1 1 0

availability (after) 0 0 0 0 1 1 0

I In C code:
uint8_t availability = 0;
availability = MON | TUE;



Adding availability

I Add availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 1 0 1 0 1 0 0

mark 0 0 0 0 1 1 0

availability (after) 1 0 1 0 1 1 0

I What needs to change in C code?
availability = MON | TUE;



Adding availability (answer)

I Add availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 1 0 1 0 1 0 0

mark 0 0 0 0 1 1 0

availability (after) 1 0 1 0 1 1 0

I C code
availability = availability | MON | TUE;

I Which set operation does OR resemble?



OR

I Can be used to set bits to 1

I Does not change a bit if it is already 1

I Resembles the set union operation ∪



Handling “except” adds

I All days except Monday or Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

except 0 0 0 0 1 1 0

availability (after) 1 1 1 1 0 0 1

I C code
uint8_t except;

except = MON | TUE;
availability = /* complete this */

I post-lecture answer: ~except



Checking availability

I Am I available on Thursday?

b6 b5 b4 b3 b2 b1 b0
availability 0 0 1 0 1 1 0

check 0 0 1 0 0 0 0

result 0 0 1 0 0 0 0

I C code (what is OP?)
uint8_t result;

result = availability OP THU;

/* value of result will be 0 or THU, depending
on whether bit THU is zero or one respectively */

I answer: &



Comparing availability

I Which days are both Prof. #1 and Prof. #2 available?

b6 b5 b4 b3 b2 b1 b0
availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

result 1 0 0 0 1 0 0

I C code (what is OP?)
uint8_t avail_prof_1 = SAT | THU | TUE;
uint8_t avail_prof_2 = SAT | FRI | TUE;
uint8_t result_common;

result_common = avail_prof_1 OP avail_prof_2;

I OP: &



Enumerating Bits

I Printing out the days both are available
char *days[] = {"SUN", "MON", "TUE", "WED",

"THU", "FRI", "SAT"};

int bitvalue = 1;
int bit;

for(bit = 0; bit < 7; bit++) {
if((result_common & bitvalue) == bitvalue) {

printf("both available on %s\n", days[bit]);
}

bitvalue = bitvalue * 2;
}



Mark unavailable on Tuesday and Thursday

I Change to unavailable for Tuesday and Thursday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 1 1 0

remove 0 0 1 0 1 0 0

mask 1 1 0 1 0 1 1

availability (after) 0 0 0 0 0 1 0

I C code (what are OP1 and OP2)?
uint8_t remove = TUE | THU;

availability = availability OP1 OP2(remove);

I OP1: &

I OP2: ~



AND

I Can be used to set bits to 0 by masking them out

I Can test if bits are set to 1

I Resembles the membership operation ∈ with single bits

I But more generally, the intersection operation ∩ on bitsets



Bitset Difference

Which days is Prof. #1 available, but Prof. #2 is not?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

difference 0 0 1 0 0 0 0

I C code (what are OP1 and OP2?)
uint8_t result_diff;

result_diff = avail_prof_1 OP1 OP2(avail_prof_2);



Bitset Difference Solution

Which days is Prof. #1 available, but Prof. #2 is not?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

mask 0 0 1 1 0 1 1

difference 0 0 1 0 0 0 0

I C code (OP1=& and OP2=˜)
uint8_t result_diff;

result_diff = avail_prof_1 OP1 OP2(avail_prof_2);



Symmetric Difference

On which days is only one Prof. available?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

symmetric difference 0 1 1 0 0 0 0

I C code (what is OP?)
result_diff = avail_prof_1 OP avail_prof_2;

I OP: ^



XOR

I Note that A ^ B ^ A = B

I XOR is a reversible operation

I XOR is symmetric difference on bitsets, hence also
represented by ⊕



Summary of bitsets

I Bitsets equivalent to sets
I But can only store 0/1 about N items
I Requires N bits

I Very compact and easily to manipulate if N < 64 (i.e.
machine word size)
I But it is easy to build bitsets of any size (just use arrays of

uint8 t or a larger type)

I Operation mapping
I Union: OR (|)
I Intersection: AND (&)
I Complement: NOT (~)
I Difference: AND NOT (& ~)
I Symmetric Difference: XOR (^)
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Bitpacking

I Sometimes space is at a premium

I Want to use as few bits as possible
I Bitfields:

I Partition a machine word into distinct fields



Example

I Suppose we want to store day and day of the week using as
little space as possible
uint8_t day = 9;
uint8_t dow = MON;

I Day takes value 1–31
I Bits required: ?

I Day of week takes 0 (SUN)– 6(SAT)
I Note here we want to store 1 of 7 values
I No need for a bitset
I Bits required: ?

I Total storage used by two uint8 t variables: 16 bits

I Bits wasted: ?



Minimum Bits using Bitfields

enum days_of_week {
SUN = 0,
MON = 1,
TUE = 2,
WED = 3,
THU = 4,
FRI = 5,
SAT = 6

};

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week



Constructing a bitfield

uint8_t daydow;
daydow = (9 << 3) | MON;

I Here, 9 is the day
I It is left-shifted by 3 bits using the left-shift (<<) operator

I Empty positions at right are filled with zeroes
I Bits at left are discarded
I Like multiplying by 103 in the metric system, except here we’re

multiplying by 23

I 0x9 (binary 1001) becomes 0x48 (binary 0100 1000)

I Then we OR the day of the week into the freshly created
lower 3 zero bits



Getting the Day of the Week

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

result 0 0 0 0 0 0 0 1

I We want to force the day (of month) field to zero.

I What are OP and MASK?
dow = daydow OP MASK;



Getting the Day of the Week (Solution)

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 0 0 0 0 0 1 1 1

result 0 0 0 0 0 0 0 1

I We want to force the day (of month) field to zero.
dow = daydow & 0x7;



Getting Day of Month

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 1 1 1 1 1 0 0 0

result 0 1 0 0 1 0 0 0

I C code, all bits except lower 3
day = daydow & (0x1f << 3);

I Is the result what we want?



Undoing the left shift

day = (daydow & (0x1f << 3)) >> 3;

I We got 0x48 because we had shifted it left
I We can undo it by doing a right shift by 3 bits using the

right-shift >>) operator
I Bits at right are discarded
I Like dividing by 23, and throwing away the

remainder/fractional part
I 0x48 (binary 0100 1000) becomes 0x9 (binary 0000 1001)



Even shorter ...

day = (daydow >> 3) & 0x1f;

I Since we’re using uint8 t, the masking is superfluous

I For unsigned integers, right shifting will fill in bits at left
with 0

I Since all bits to the left of the Day of Month field are zero, we
can eliminate the mask and the AND
I But recommend always using a mask, as good programming

practice



Real-life bitfields and bitsets: Unix file permissions

I Basic File permissions (can be simultaneously enabled)
I READ
I WRITE
I EXECUTE

I Permissions for
I User/Owner
I User’s Group
I Others

b8 b7 b6 b5 b4 b3 b2 b1 b0
rwxr-x--- 1 1 1 1 0 1 0 0 0

User/Owner Group Others
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Bitwise Operations

I Bitwise operations operate on integers and produce integers

I Logical operations operate on booleans/integers and produce
booleans

I Logical operators:
I AND: &&
I OR: ||
I NOT: !

I Boolean values are TRUE and FALSE
I In C, 0 is FALSE
I Everything else is TRUE



Comparing Bitwise and Boolean: Results

I AND
I Bitwise: 3 & 7 = 3
I Boolean: 3 && 7 = 1

I OR
I Bitwise: 3 | 7 = 7
I Boolean: 3 || 7 = 1

I NOT
I Bitwise: ~0 = 0xff...
I Boolean: !0 = 1
I Boolean: !5 = 0



Boolean Operators: Short-circuit Behaviour

I AND
I Boolean: 0 && (5 / 0) = 0

I OR
I Boolean: 3 || (5 / 0) = 1

I None of the divisions by zero in the expressions above will be
executed
I && stops evaluating as soon as a subexpression evaluates to

FALSE
I || stops evaluating as soon as a subexpression evaluates to

TRUE
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Integer format

I For int32 t type:
I 1 bit sign
I 31 bits value
I Essentially a bitfield!



Adding two integers of different widths

int8_t x = -5;
int16_t y = 10;

y = y + x;



Shifting a signed integer to the right

int8_t x = -72;

x = x >> 3;



Unsigned integer overflow and underflow

/* overflow */
uint8_t x = 255;
x = x + 1;

/* underflow */
uint8_t x = 0;
x = x - 1;



Signed integer overflow

/* overflow */
int8_t x = INT8_MAX;

x = x + 1;

/* underflow */
int8_t x = INT8_MIN;
x = x - 1;



Summary

I Bitsets
I and set-like operations using bitwise operators

I Bitfields
I shifts and masks

I Logical operators
I differences from bitwise and short-circuit behaviour

I Integer arithmetic
I Some things to ponder about
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