
CSC2/452 Computer Organization
Bitsets, Bitfields, Integer Arithmetic

Sreepathi Pai

URCS

September 12, 2022



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Stuff from previous lectures that we’ll need today

I Bits: 0 and 1
I Unary functions: NOT
I Binary functions: AND, OR, XOR, NAND, NOR, ...
I Defined for inputs of 1 bit
I Extensible to bit vectors and bit strings

I Machine data types
I Byte (8 bits) smallest unit
I Usually go up to 64 bits

I Integers
I Sign-Magnitude, One’s complement, Two’s Complement, ...

I C Mapping of Types
I machine-dependent sizes: char, int, ...
I machine-independent sizes: uint8 t, uint16 t, ...



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Mathematical Sets

I P = {2, 3, 5, 7, 11, ...}
I O = {1, 3, 5, 7, 9, 11, 13, ...}
I Operations on mathematical sets:

I Membership: 9 ∈ P?
I Union: P ∪ O
I Intersection: P ∩ O
I Complement: Ō = O ′ = {2, 4, 6, 8, ...} (assuming U = N+)
I Difference: P − {2}
I Symmetric Difference: P ⊕ O = {1, 2, 9, ...} (elements in

either set but not both)



Bitsets

I Suppose you want to store two pieces of information ...
I On/Off
I Absent/Present
I Enable/Disable
I etc.

I about N different items simultaneously
I Example: Days of the week that I am available to meet

I information: available/not available
I 7 items: Sun, Mon, Tue, Wed, Thu, Fri, Sat

I How should we encode this information?
I not using dlog2(7)e bits!
I That’s for storing 1 of N different values



Constructing Bitsets

b6 b5 b4 b3 b2 b1 b0
1 0 1 1 0 0 1

SAT FRI THU WED TUE MON SUN

I Use 1 bit per day, total 7 bits
I If bit x is set to 1 then I’m available on day mapped to bit x

I Interpretation matters: 1 could also be used to mean
unavailable (and then 0 would be available)

I We will use 1 for available, 0 for unavailable



Constructing Bitsets in C

enum DOW_BITS {
SUN = 1, /* bit 0 */
MON = 2,
TUE = 4,
WED = 8,
THU = 16,
FRI = 32,
SAT = 64 /* bit 6 */

};

Another common option for defining constants in C:

I #define SUN 1 (avoid for new code)



C bitwise operations

I Bitwise NOT (a) is ~a

I Bitwise AND(a, b) is a & b

I Bitwise OR(a, b) is a | b

I Bitwise XOR(a, b) is a ^ b

Do not confuse bitwise operators with logical/boolean operators
which are !, &&, ||, described later in this lecture.



Marking availability

I Marking availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

mark 0 0 0 0 1 1 0

availability (after) 0 0 0 0 1 1 0



Marking availability (in code)

I Marking availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

mark 0 0 0 0 1 1 0

availability (after) 0 0 0 0 1 1 0

I In C code:
uint8_t availability = 0;
availability = MON | TUE;



Adding availability

I Add availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 1 0 1 0 1 0 0

mark 0 0 0 0 1 1 0

availability (after) 1 0 1 0 1 1 0

I What needs to change in C code?
availability = MON | TUE;



Adding availability (answer)

I Add availability on Monday and Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 1 0 1 0 1 0 0

mark 0 0 0 0 1 1 0

availability (after) 1 0 1 0 1 1 0

I C code
availability = availability | MON | TUE;

I Which set operation does OR resemble?



OR

I Can be used to set bits to 1

I Does not change a bit if it is already 1

I Resembles the set union operation ∪



Handling “except” adds

I All days except Monday or Tuesday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 0 0 0

except 0 0 0 0 1 1 0

availability (after) 1 1 1 1 0 0 1

I C code
uint8_t except;

except = MON | TUE;
availability = /* complete this */

I post-lecture answer: ~except



Checking availability

I Am I available on Thursday?

b6 b5 b4 b3 b2 b1 b0
availability 0 0 1 0 1 1 0

check 0 0 1 0 0 0 0

result 0 0 1 0 0 0 0

I C code (what is OP?)
uint8_t result;

result = availability OP THU;

/* value of result will be 0 or THU, depending
on whether bit THU is zero or one respectively */

I answer: &



Comparing availability

I Which days are both Prof. #1 and Prof. #2 available?

b6 b5 b4 b3 b2 b1 b0
availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

result 1 0 0 0 1 0 0

I C code (what is OP?)
uint8_t avail_prof_1 = SAT | THU | TUE;
uint8_t avail_prof_2 = SAT | FRI | TUE;
uint8_t result_common;

result_common = avail_prof_1 OP avail_prof_2;

I OP: &



Enumerating Bits

I Printing out the days both are available
char *days[] = {"SUN", "MON", "TUE", "WED",

"THU", "FRI", "SAT"};

int bitvalue = 1;
int bit;

for(bit = 0; bit < 7; bit++) {
if((result_common & bitvalue) == bitvalue) {

printf("both available on %s\n", days[bit]);
}

bitvalue = bitvalue * 2;
}



Mark unavailable on Tuesday and Thursday

I Change to unavailable for Tuesday and Thursday

b6 b5 b4 b3 b2 b1 b0
availability (before) 0 0 0 0 1 1 0

remove 0 0 1 0 1 0 0

mask 1 1 0 1 0 1 1

availability (after) 0 0 0 0 0 1 0

I C code (what are OP1 and OP2)?
uint8_t remove = TUE | THU;

availability = availability OP1 OP2(remove);

I OP1: &

I OP2: ~



AND

I Can be used to set bits to 0 by masking them out

I Can test if bits are set to 1

I Resembles the membership operation ∈ with single bits

I But more generally, the intersection operation ∩ on bitsets



Bitset Difference

Which days is Prof. #1 available, but Prof. #2 is not?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

difference 0 0 1 0 0 0 0

I C code (what are OP1 and OP2?)
uint8_t result_diff;

result_diff = avail_prof_1 OP1 OP2(avail_prof_2);



Bitset Difference Solution

Which days is Prof. #1 available, but Prof. #2 is not?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

mask 0 0 1 1 0 1 1

difference 0 0 1 0 0 0 0

I C code (OP1=& and OP2=˜)
uint8_t result_diff;

result_diff = avail_prof_1 OP1 OP2(avail_prof_2);



Symmetric Difference

On which days is only one Prof. available?
b6 b5 b4 b3 b2 b1 b0

availability (Prof. #1) 1 0 1 0 1 0 0
availability (Prof. #2) 1 1 0 0 1 0 0

symmetric difference 0 1 1 0 0 0 0

I C code (what is OP?)
result_diff = avail_prof_1 OP avail_prof_2;

I OP: ^



XOR

I Note that A ^ B ^ A = B

I XOR is a reversible operation

I XOR is symmetric difference on bitsets, hence also
represented by ⊕



Summary of bitsets

I Bitsets equivalent to sets
I But can only store 0/1 about N items
I Requires N bits

I Very compact and easily to manipulate if N < 64 (i.e.
machine word size)
I But it is easy to build bitsets of any size (just use arrays of

uint8 t or a larger type)

I Operation mapping
I Union: OR (|)
I Intersection: AND (&)
I Complement: NOT (~)
I Difference: AND NOT (& ~)
I Symmetric Difference: XOR (^)



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Bitpacking

I Sometimes space is at a premium

I Want to use as few bits as possible
I Bitfields:

I Partition a machine word into distinct fields



Example

I Suppose we want to store day and day of the week using as
little space as possible
uint8_t day = 9;
uint8_t dow = MON;

I Day takes value 1–31
I Bits required: ?

I Day of week takes 0 (SUN)– 6(SAT)
I Note here we want to store 1 of 7 values
I No need for a bitset
I Bits required: ?

I Total storage used by two uint8 t variables: 16 bits

I Bits wasted: ?



Minimum Bits using Bitfields

enum days_of_week {
SUN = 0,
MON = 1,
TUE = 2,
WED = 3,
THU = 4,
FRI = 5,
SAT = 6

};

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week



Constructing a bitfield

uint8_t daydow;
daydow = (9 << 3) | MON;

I Here, 9 is the day
I It is left-shifted by 3 bits using the left-shift (<<) operator

I Empty positions at right are filled with zeroes
I Bits at left are discarded
I Like multiplying by 103 in the metric system, except here we’re

multiplying by 23

I 0x9 (binary 1001) becomes 0x48 (binary 0100 1000)

I Then we OR the day of the week into the freshly created
lower 3 zero bits



Getting the Day of the Week

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

result 0 0 0 0 0 0 0 1

I We want to force the day (of month) field to zero.

I What are OP and MASK?
dow = daydow OP MASK;



Getting the Day of the Week (Solution)

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 0 0 0 0 0 1 1 1

result 0 0 0 0 0 0 0 1

I We want to force the day (of month) field to zero.
dow = daydow & 0x7;



Getting Day of Month

b7 b6 b5 b4 b3 b2 b1 b0
Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 1 1 1 1 1 0 0 0

result 0 1 0 0 1 0 0 0

I C code, all bits except lower 3
day = daydow & (0x1f << 3);

I Is the result what we want?



Undoing the left shift

day = (daydow & (0x1f << 3)) >> 3;

I We got 0x48 because we had shifted it left
I We can undo it by doing a right shift by 3 bits using the

right-shift >>) operator
I Bits at right are discarded
I Like dividing by 23, and throwing away the

remainder/fractional part
I 0x48 (binary 0100 1000) becomes 0x9 (binary 0000 1001)



Even shorter ...

day = (daydow >> 3) & 0x1f;

I Since we’re using uint8 t, the masking is superfluous

I For unsigned integers, right shifting will fill in bits at left
with 0

I Since all bits to the left of the Day of Month field are zero, we
can eliminate the mask and the AND
I But recommend always using a mask, as good programming

practice



Real-life bitfields and bitsets: Unix file permissions

I Basic File permissions (can be simultaneously enabled)
I READ
I WRITE
I EXECUTE

I Permissions for
I User/Owner
I User’s Group
I Others

b8 b7 b6 b5 b4 b3 b2 b1 b0
rwxr-x--- 1 1 1 1 0 1 0 0 0

User/Owner Group Others



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Bitwise Operations

I Bitwise operations operate on integers and produce integers

I Logical operations operate on booleans/integers and produce
booleans

I Logical operators:
I AND: &&
I OR: ||
I NOT: !

I Boolean values are TRUE and FALSE
I In C, 0 is FALSE
I Everything else is TRUE



Comparing Bitwise and Boolean: Results

I AND
I Bitwise: 3 & 7 = 3
I Boolean: 3 && 7 = 1

I OR
I Bitwise: 3 | 7 = 7
I Boolean: 3 || 7 = 1

I NOT
I Bitwise: ~0 = 0xff...
I Boolean: !0 = 1
I Boolean: !5 = 0



Boolean Operators: Short-circuit Behaviour

I AND
I Boolean: 0 && (5 / 0) = 0

I OR
I Boolean: 3 || (5 / 0) = 1

I None of the divisions by zero in the expressions above will be
executed
I && stops evaluating as soon as a subexpression evaluates to

FALSE
I || stops evaluating as soon as a subexpression evaluates to

TRUE



Outline

Recap

Bitsets

Bitfields

Logical Operations

Integer Arithmetic



Integer format

I For int32 t type:
I 1 bit sign
I 31 bits value
I Essentially a bitfield!



Adding two integers of different widths

int8_t x = -5;
int16_t y = 10;

y = y + x;



Shifting a signed integer to the right

int8_t x = -72;

x = x >> 3;



Unsigned integer overflow and underflow

/* overflow */
uint8_t x = 255;
x = x + 1;

/* underflow */
uint8_t x = 0;
x = x - 1;



Signed integer overflow

/* overflow */
int8_t x = INT8_MAX;

x = x + 1;

/* underflow */
int8_t x = INT8_MIN;
x = x - 1;



Summary

I Bitsets
I and set-like operations using bitwise operators

I Bitfields
I shifts and masks

I Logical operators
I differences from bitwise and short-circuit behaviour

I Integer arithmetic
I Some things to ponder about


	Recap
	Bitsets
	Bitfields
	Logical Operations
	Integer Arithmetic

