CSC2/452 Computer Organization Floating Point

Sreepathi Pai

URCS

September 19, 2022

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Announcements

- ► Homework #2 is out
 - Due this Wednesday IN CLASS.
- ► Assignment #1 out
 - Due next week, Monday Sep 26 at 7PM.
 - ► This assignment builds in time for getting your environment sorted out: CSUG accounts, etc.

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Real Numbers

- ightharpoons
 - ▶ infinite (just like integers)
 - but they are different infinity (uncountable)
- ► There are infinite real numbers between any two real numbers
- How do we represent these using a finite, fixed number of bits?
 - ► Say, 32 bits

The problem

- Assume 5 bits are available
- Consider 17: 10001
- Consider 18: 10010
- ▶ Where shall we put 17.5?
 - ▶ No bit pattern "halfway" between 10001 and 10010

One option

- Consider only deltas of 0.25, 0.5, 0.75
- ► Then
 - **17.00:** 10001
 - **17.25**: 10010
 - **17.50: 10011**
 - **17.75**: 10100
 - **18.00: 10101**
- This is the basis of the idea of fixed point
 - Can't represent all numbers
 - Fixed accuracy
- Used widely in tiny computers

Representing Real Numbers

- We cannot represent real numbers accurately using a finite, fixed number of bits
 - ▶ But do we need infinite accuracy?
- ▶ How many (decimal) digits of precision do we use?
 - ▶ In our bank accounts (before and after the decimal point?)
 - ► In engineering?
 - ► In science?

On magnitudes

- Smallest length
 - ▶ Planck length, on the order of 10⁻³⁵ (would require 35 decimal digits)
- Smallest time
 - \triangleright Planck time, on the order of 10^{-44}
- Width of visible universe
 - On the order of 10²⁴
 - Lower bound on radius of universe: 10²⁷

On precision

- \triangleright Avogadro's number: $6.02214076 \times 10^{23}$
 - So, actually: 602214076000000000000000
- $\pi = 3.1415... \times 10^0$
 - ▶ NASA requires about 16 decimal digits of π^1
 - We know about a trillion

Scientific notation for numbers

▶ The scientific notation allows us to represent real numbers as:

$$significand \times base^{exponent}$$

For Avogadro's number:

► Significand: 6.02214076

 Significand is scaled so always only one digit before the decimal point

▶ Base: 10

Exponent: 23

Binary Scientific Notation

▶ We can use scientific notation for binary numbers too:

$$1.011 \times 2^3$$

► Here, the number is:

$$(1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^3$$

$$(1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0) = 11_{10}$$

► Components:

► Significand: 1.011

▶ Base: 2

Exponent: 3

Binary Scientific Notation: Example #2

Now with a negative exponent:

$$1.011 \times 2^{-3}$$

- ► Here, the number is:
 - $(1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{-3}$
 - $(1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6})$
 - $(0.125_{10} + 0 + 0.0625_{10} + 0.03125_{10}) = 0.171875$
- Components:
 - Significand: 1.011
 - ▶ Base: 2
 - Exponent: -3

Some design notes

- Significand contains a radix point (i.e. decimal point or binary point)
 - But it's position is fixed: only one digit before the radix point
 - ▶ In binary scientific notation, this is always 1 (why?)
 - We don't need to store the radix point
 - So significand can be treated as an integer with an implicit radix point
- Base is always 2 for binary numbers
 - No need to store this
- Exponent is also an integer
 - Could be negative or positive or zero

Design notes (continued)

- So (binary) real numbers can be expressed as a combination of two fields:
 - significand (possibly a large number, say upto 10 decimal digits)
 - exponent (possibly a smallish number, say upto 44₁₀)
 - would allow us to store numbers with at least 10 decimal digits of precision, upto 44 decimal digits long
- We'll also need to store sign information for the significand and the exponent
- ► How many bits?
 - ▶ for 10 significant decimal digits? e.g. 9,999,999,999
 - for max. exponent 50₁₀?
 - plus two bits for sign (one for significand, one for exponent)

Design notes (continued)

- ► How many bits?
 - for 10 significant decimal digits? e.g. 9,999,999,999: about 34 bits
 - ▶ for max. exponent 50? about 6 bits
 - plus two bits for sign (one for significand, one for exponent)
- ► Total: 34 + 6 + 2 = 42 bits
 - Could be implemented as a bitfield
 - ▶ But 42 is between 32 and 64, not efficient to manipulate
- What format should we use to store negative significands and exponents?
 - ► sign/magnitude
 - one's complement
 - two's complement
 - other?

Bitfield Design Constraints

- Ideally should fit sign, significand and exponent in 32 bits or 64 bits
 - Easier to manipulate on modern systems
- Arithmetic operations should be fast and "easy"
- Comparison operations should be fast and "easy"
 - e.g. should not need to extract fields and compare separately
 - useful for sorting numbers
- Should satisfy application requirements
 - esp. with accuracy, precision and rounding
 - should probably be constraint #1

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

IEEE 754 32-bit floating point standard

- ► Total size: 32-bits
 - Also called "single-precision"
 - On most systems, the C type float is single-precision
- Significand: 24 bits, roughly 7 significant (decimal) digits of accuracy
 - Sometimes called (wrongly) the Mantissa
- ► Exponent: 8 bits, from 2^{-126} to 2^{127} (roughly 10^{-38} to 10^{38} (decimal))
- ▶ Sign bit: 1 sign bit for the significand
 - What about sign bit for the exponent?
- Also supports special representations:
 - ▶ for $+\infty$ and $-\infty$
 - For "not-a-number" NaN, e.g. for representing (0/0)
 - "denormals"
- Note: 24 + 8 + 1 = 33, not 32

Representing the significand

1.100 1001 0000 1111 1101 1011

- 24 bits of significand
- Normalized form, only one digit before the radix point
 - Change the exponent until this is achieved (normalization)
 - That digit must be non-zero
 - Always 1
- ► Hence, do not need to store it!
 - ▶ Only use 23 bits for the magnitude
 - In example, only 100 1001 0000 1111 1101 1011 is stored
- Uses sign/magnitude notation (not one's or two's complement)
 - ▶ 1 bit for sign (0 for +, 1 for -)
 - 23 bits for magnitude + one always 1 implicit bit (not stored)

Appreciating Precision

One weird trick to make money from banks:

```
int main(void) {
  float f;
  int i;

  f = 16777216.0;
  f = f + 3.0;

  printf("%f\n", f);
}
```

#include <stdio.h>

- Note that 16777216 is 2²⁴
- What is the value of f that is printed?
 - A: 16777216.0
 - ► B: 16777219.0
 - C: 16777220.0
 - D: something else
 - E: undefined

More Surprises

```
#include <stdio.h>
int main(void) {
  float f;
  int i;
  f = 16777216.0;
  for(i = 0; i < 2000; i++) {
    f = f + 1.0:
    // printf("f\n", f) // uncomment to see what is happening
 printf("%f\n", f);
```

- What is the value of f that is printed?
 - A: 1677**7**216.0
 - B: 1677**9**216.0
 - C: something else
 - D: undefined

This is not C specific!

- ▶ Integers in Python behave differently from C
 - Don't overflow, are always signed
 - Python's integers are like mathematical integers
- ▶ Very few languages implement mathematical reals though.
 - ► Most use IEEE 754
 - Python, Javascript, Java, etc.

Rounding

- ► IEEE floating point rounds numbers that cannot be exactly represented
- ► For an operation \oplus (where \oplus could be any of *mathematical* $+,-,/,\times$)
 - ▶ the standard says $x \oplus y \rightarrow Round(x \oplus y)$
- ► Four rounding modes
 - Round towards nearest (also known as round towards even, and default)
 - Round towards zero
 - ightharpoonup Round towards $+\infty$
 - ightharpoonup Round towards $-\infty$

What's happening

- ▶ 16777216.0 + 1.0 is unrepresentable
 - By default, rounding mode is round to nearest
 - ► Nearest is 16777216.0
 - No change!
- Why it is also called round to even
 - ► If an unrepresentable value is equidistant between two representable values
 - It is not possible to say which is "nearest"
 - ► IEEE standard picks the *even* value between the two representable values
- This makes floating point arithmetic non-associative
 - $(a+b)+c \neq a+(b+c)$
 - $((a+1.0)+1.0) \neq (a+(1.0+1.0))$

Representing the Exponent

- ▶ 8-bit wide bitfield
 - Can store 256 values
 - ▶ Must store values from -126 to 127 (that's 254 values)
- Uses biased representation
 - ▶ To store x, we actually store x + 127 in 8 bits
 - So 127 is stored as 254
 - ► And −126 is stored as 1
 - No sign bit required!
 - So field actually contains values from 1 to 254 to represent −126 to 127
- ► The biased values 0 and 255 are used to indicate special numbers

Why biased? Comparing exponents

Which is greater?

$$1.011 \times 2^{-3}$$

Or:

$$1.011 \times 2^{+3}$$

- ▶ Note -3 in biased notation is $-3 + 127 = 124 = 01111100_2$
- Note 3 in biased notation is $+3 + 127 = 130 = 10000010_2$

Putting it altogether

- Three bit fields
 - ► s: Significand Sign (1 bit)
 - ► M: Significand (23 bits)
 - E: Biased Exponent (8 bits)
- ▶ 6 possible ways to order them
 - ▶ s, M, E
 - ► s, E, M
 - ► M, s, E
 - ► *M*, *E*, *s*
 - ► *E*, *s*, *M*
 - ► *E*, *M*, *s*
- Out of familiarity, let's only consider those where s occupies higher bits than M

Comparing Three Formats

- Suppose you have two numbers:
 - $a = 1.100... \times 2^3$
 - $b = 1.010... \times 2^5$
 - ▶ Which is greater?
- Representation
 - ► Significand: 100...₂ for a and 010..₂ for b
 - Exponent: $3 + 127 = 130 = 1000\,0010_2$ and $5 + 127 = 132 = 1000\,0100_2$
 - Sign is 0 for both

Comparing Three formats (contd.)

```
    ► s, M, E
    ► 0 | 100 000 ... | 1000 0010
    ► 0 | 010 000 ... | 1000 0100
    ► s, E, M
    ► 0 | 1000 0010 | 100 000 ...
    ► 0 | 1000 0100 | 010 000 ...
    ► E, s, M
    ► 1000 0010 | 0 | 100 000 ...
    ► 1000 0100 | 0 | 010 000 ...
```

IEEE 754 Single Precision Format

- ightharpoonup Uses s, E, M format
- ▶ If a number x > y, then its bitwise representation x > y
 - ▶ When sign bit is same, scan from bit 30 to 0, looking for first different bit
 - When sign bit is different, 1 in sign bit indicates less than 0 (exceptions +0 and -0)
- Can thus compare floating point numbers without having to extract bitfields!

Representing Zero

$$0 \times 2^{x}$$

- ► Has no leading 1
- Special representation
 - ► Sign bit can be 0 or 1
 - Exponent is all zeroes (i.e. it appears to be -127 stored biased, hence -126 is lower limit)
 - Magnitude is all zeroes
- ► Hence:
 - ► +0: all 32 bits are zero
 - ightharpoonup -0: sign bit is 1, but all other bits are zero

The smallest normalized single-precision number

$$+1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$$

- ▶ In IEEE: 0 | 0000 0001 | 000 0000 0000 0000
 - | just for visual separator
- ightharpoonup That's just 2^{-126}
 - Approximately, $1.17549435 \times 10^{-38}$
- What should happen if we divide this by two?
 - ► I.e.

 - $(+1.000\,0000\,0000\,0000\,0000\,\times\,2^{-126})/2$
 - $(+1.000\,0000\,0000\,0000\,0000 \times 2^{-127})$

Let's make it zero!

- Default behaviour on many systems before IEEE754
 - Underflow to zero
- $a = 1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$
- $b = 1.000\,0000\,0000\,0000\,0001 \times 2^{-126}$
- \blacktriangleright What is a b?
 - \triangleright Remember, $a \neq b$
- ▶ What would x/(a-b)?

Denormals

- $a = 1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$
- $b = 1.000\,0000\,0000\,0000\,0001 \times 2^{-126}$
- - Numbers of this form are called *denormals* or *subnormals*
 - They have a 0 before the radix point
- ► IEEE 754 specifies how to store denormals:
 - s, sign as usual
 - E, exponent is zero
 - M, the significand is non-zero
- This allows "gradual underflow" to zero
 - Some systems detect denormals and perform arithmetic in software
 - ► Slow!

Representing Infinities

- 0 1111 1111 000 0000 0000 0000 0000
- In the above representation,
 - ► Sign: 0
 - Exponent: 255
 - Significand: 0
- Exponent
 - 0 indicates either zero or a subnormal
 - 1 to 254 indicates normalized exponent -126 to 127
 - 255 indicates either infinity or NaN
- With significand zero:
 - **Exponent** 255 indicates $+\infty$ or $-\infty$ (depending on sign)
 - ▶ $-\infty < x < +\infty$ where x is any representable number

Representing NaNs

O 1111 1111 xxx xxxx xxxx xxxx xxxx

- In the above representation,
 - ► Sign: 0
 - Exponent: 255
 - Significand: $\neq 0$ (i.e. the x bits are not all zero)
- With significand non-zero:
 - Exponent 255 indicates NaN (not-a-number)
 - ▶ Produced by operations like 0/0, ∞/∞ , etc.
- ► NaNs propagate:
 - Any operation involving a NaN results in a NaN

Addition in Floating Point

Add

$$a = 1.000\,0000\,0000\,0000\,0000 \times 2^3$$

to:

$$b = 1.000\,0000\,0000\,0000\,0000 \times 2^4$$

Equalizing exponents

- Exponents for a and b are different, so equalize them
 - Shift one of them
 - ► The shifted representation is *internal*
 - Only the result after addition is visible
- $b = 10.00\,0000\,0000\,0000\,0000 \times 2^3$
- $a + b = 11.00\,0000\,0000\,0000\,0000 \times 2^3$
- Normalized, $1.100\,0000\,0000\,0000\,0000 \times 2^4$

Double-precision

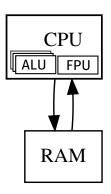
- ▶ 64-bit floating point format
 - ➤ Significand: 53 bits (52 stored), around 17 decimal digits of precision
 - Exponent: 11 bits (biased by 1023)
 - Sign: 1 bit
- In C, usually double
- \triangleright Range: 2^{-1022} to 2^{1023} for normalized numbers
 - ▶ Roughly 10^{-308} to 10^{308}

A Programmer's View of Floating Point

- ▶ When translating algorithms from math to code, be wary
 - Computers use floats, not real numbers!
- ► Two major problems:
 - ► Non-termination (usually because exact == is not possible)
 - Numerical instability (approximation errors are "magnified")
- ▶ If you deal with computational science or use numerics extensively, educate yourself
 - Resources at the end
 - Or take a Numerical Analysis class (primer at the end)

How the machine supports floating point

- ► A math co-processor called the "floating point unit"
 - Back in the day, a separate processor
 - ► The Intel 387 is a classic
- ► For machines without a coprocessor, everything was done in software
 - Sometimes called "softfloat"
 - Still used to handle denormals on some processors
- These days, integrated into the CPU as FPUs



Some excitement these days

- ▶ Intel, NVIDIA and AMD recently announced support for FP8
 - ▶ 8-bit floating point numbers
- ► Follows the introduction of FP16 a few years ago
 - 16-bit floating point numbers
- Driven by the needs of deep learning programs and memory constraints
 - Also, "correctness" is not number #1 priority for DL

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Python Integers

Python only has signed integers (like Java)

```
v = 1
for i in range(256):
    v = v * 2
print(v)
```

- ▶ What is the value of v that is printed?
 - A: Undefined
 - ▶ B: 2²⁵⁶ mod 2⁶⁴ (assuming 64-bit integers)
 - ► C: 2²⁵⁶
- ► Reference: Python Numeric Types

Arbitrary Precision Floating Point

The bc calculator in Linux:

```
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
16777216.0+1.0
16777217.0
16777216.0+3.0
16777219.0
f = 16277216.0
for(i = 0; i < 2000; i++) { f += 1.0; }
16279216.0
```

Summary

- Take away: floating point numbers are NOT real numbers
- Reference: Chapter 2

For further study:

- Link to An Interview with the Old Man of Floating-Point
 - IEEE754 won William Kahan the Turing Award
- Definitely read:
 - Goldberg, What Every Computer Scientist should Know about Floating-Point Arithmetic, ACM 1991
 - Stadherr, High Performance Computing, Are we just getting wrong answers faster?
 - Trefethen, Numerical Analysis