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Administrivia

I A2 Part II will land tomorrow, deadline will be Sunday
October 30, 2022 at 7PM.
I This will be challenging, start early

I Homework #5 is out today
I Due next Wed in class as usual
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The Processor and RAM (so far)

RAM

CPU

ALUALU FPU

AGU L/SU
Fetch Decode

Re
gi

st
er

s
RD: address RD: data

WR: address+data



Recall hellopi execution statistics (lecture 1)

$ perf stat -e instructions ./a.out
Hello, the value of pi is 3.141593

Performance counter stats for ’./a.out’:

662,172 instructions

0.001168841 seconds time elapsed



The Problem

How do you execute billions of instructions as quickly as possible?



The Performance Equation

T =
W × t

P

I W , work items to be completed
I e.g., instructions to be executed

I t, the average time per work item
I cost per work item

I P, average parallelism
I Number of work items that can be executed in parallel

I T , total time for execution



Example: Preparing Breakfast

I Work item 1: Toast
I Time for making toast: 2 minutes

I Work item 2: Coffee
I Time for making coffee: 3 minutes
I Not instant!



Prep. Time for Breakfast: Serial

Coffee Toast

3min 2min
Time
Ta

sk

I Toast: 2 minutes, Coffee: 3 minutes
I Only Stove available to make breakfast

I Average Parallelism: P = 1
I Work items W = 2
I Average Time t = (3 + 2)/2
I Total Time: ?



Prep. Time for Breakfast: Parallel

I Toast: 2 minutes, Coffee: 3
minutes

I Stove and Toaster available
I Total Time: 3 minutes
I Work items W = 2
I Average Time

t = (3 + 2)/2
I Average Parallelism: P =

(2 × 2 + 1 × 1)/3 = 1.66

I Speedup (serial time/parallel
time) is 5/3 = 1.66
I But, requires more

equipment

Coffee
Toast

2min 1min
Time

Ta
sk



Other ways to speed up breakfast

I Don’t eat toast
I Decreases work, W

I Drink instant coffee
I Decreases average time, t



Speeding up Programs

I Do less work (i.e., decrease W )
I fewer instructions
I choose algorithms with fewest operations

I Do cheaper work (i.e., decrease t)
I not all instructions have the same cost
I e.g. integer multiplies are slower than integer shifts
I the algorithm with lower constant costs is better
I purpose of this course: to teach you which instructions are

cheap and which are expensive
I Moore’s Law gave us free decreases in t

I Increase parallelism (i.e. increase P)
I only option left if you’ve already reduced W and t
I take CSC258 to know more



Example: Making a Sandwich

Toast

2min 1min
Time

Ta
sk

Cheese+Tomato (C&T)

Melt

1min

I Toast 2 bread slices (2 minute)
I Add cheese and tomato slices (1 minute)

I Assuming tomatoes and cheese have to be sliced

I Melt cheese (1 minute)

I Total time: ?

I Average Parallelism: ?



Making 3 sandwiches

Ta
sk

2min 1min
Time
1min

Toast MeltC&T
Toast MeltC&T
Toast MeltC&T

I Total time: ?

I Average Parallelism: ?
I Equipment needed: ?

I Toasters?
I Knives?
I Stove? [assume one stove can melt cheese in one sandwich]
I Workers?



Making sandwiches: Observations

I Making one sandwich takes 4 minutes, end-to-end
I Each step is dependent on previous step, no parallelism

I Making multiple sandwiches is highly parallel
I Making each sandwich is independent of the other
I But exploiting that parallelism requires lots of equipment
I Also, as far as sandwich eaters are concerned, they get a one

sandwich every 4 minutes



Pipeline Parallelism in the Kitchen

2min 1min
Time

1min

Toast

Melt
C&T

Toast

Melt
C&T

Toast

Melt
C&T

Toaster

Filling 
Station
Melt
Station

2min 2min

Sandwich 1 Sandwich 2 Sandwich 3

I Equipment needed?
I Toasters (Toaster station): ?
I Knives (Filling station): ?
I Stove (Melt station): ?
I Workers?

I Time for first sandwich?
I Time for subsequent sandwiches (indicated by stars)?

I Each sandwich still takes 4 minutes to make



Alternate View: Pipeline Parallelism in the Kitchen

MeltC&T

Toast MeltC&T
Toast MeltC&T

2min 1min
Time

1min 2min 2min

Sandwich 1

Sandwich 2

Sandwich 3

Toast

I Same timeline as previous figure, but from perspective of
sandwich instead of a work station



Some performance measures

I Sandwich Latency (also Job Service Time): 4 minutes
I Also pipeline fill time

I Service time (or System Latency) for making sandwiches: 2
minutes
I Time after pipeline is full

I Throughput (rate) of making sandwiches: 1 sandwich every 2
minutes



Pipeline Parallelism

I Used to parallelize many similar (but independent) tasks

I Each task consists of highly dependent steps
I Pipelines consist of (sequential/serial) stages

I Usually correspond to steps of each task

I But each stage can be handling steps from different tasks at a
given time
I e.g. at Time 5: sandwich 3 in Toaster and sandwich 2 in Filling

I Does not require more equipment than that required by one
task
I May require more “workers”



You’re not in culinary class!

How do these techniques apply to instruction execution (our
original problem)?
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Steps in Instruction Execution

Instruction execution in a processor consists of at least 3 steps:

I Fetch instruction

I Decode instruction

I Execute instruction

Each step is dependent on the previous one. But there are many
instructions in a program!



Program Execution: Example #1

I1: movq -8(%rbp), %rax
I2: addq %rcx, %rdx

Are I1 and I2 independent of each other?
I I1:

I reads memory: -8(%rbp)
I writes register: %rax

I I2:
I reads register: %rcx
I writes register: %rdx



Program Execution: Example #2

I3: movq -8(%rbp), %rax
I4: addq %rax, %rdx

Are I3 and I4 independent of each other?
I I3:

I reads memory: -8(%rbp)
I writes register: %rax

I I4:
I reads register: %rax
I writes register: %rdx



Data Dependences

I I1 and I2 are independent
I Reads and writes do not overlap

I I3 and I4 are dependent
I I3 produces (i.e. writes) value that is consumed (i.e. read) by

I4
I I4 execution must wait until I3 produces a value

I Sometimes called a “Data Hazard”, but only by computer
architects



Program Execution: Example #3

test %eax, %eax
jnz L1
movq ...
add ...
div ...
jmp ...

L1:
xor %eax, %eax
ret

I Which instruction follows jnz?

I Which instruction follows ret?



Pipeline State

 jnz

movq

addFetch

Execute

Decode

movq

 jnz

 jnz

Time
I If jnz does not jump, then current state of pipeline (green

box) is valid.
I If jnz does make the jump, what must we do?

I can’t execute movq and add



Control Dependences

I Can’t decide which instruction follows jnz until it finishes
execution
I Could be movq if %eax is zero
I Could be xor (at L1)

I Can’t decide which instruction follows ret either
I Need to look at function stack to find return address

I In these cases, the instructions we have fetched and decoded
may be wrong
I Usually, we need to throw them away
I Called a “pipeline flush”

I Sometimes called a “Control Hazard”, but only by computer
architects



Program Execution: Example #4

divl %ecx
addq %edi, %esi

I Both divl and addq use the ALU
I But divl takes more time than addq

I addq must wait until divl is done



Structural Dependence/‘Hazards’

I Different instructions may require use of the same (type) of
resources

I Instructions must wait until “structure” (e.g. functional unit)
is free
I Could be other structures, e.g. queues

I Kitchen analogy:
I Toast + Coffee with only one stove and no toaster
I Can only toast or make coffee at the same time, not both



Instruction Execution: The Problem

I Could be pipelined
I Each instruction consists of multiple steps
I There are many instructions that must be executed

I Complication: Not all instructions are independent
I Data dependence: Instruction requires results from previous

instruction
I Control dependence: Next instruction depends on execution of

current instruction
I Structural dependence: Instructions may require use of same

structure or some structure is full

I Other complications
I Instructions can take different execution times (e.g. divl vs

addq)
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Stages

Although a 3-stage pipeline can be used (and sometimes fewer
stages can also be used, usually by eliminating decode1), usually 5
stages are used:

I Instruction Fetch (IF)

I Instruction Decode (ID)

I Instruction Execute (EX)

I Memory (MEM)

I Instruction Writeback (or retirement) (WB)

The MIPS R2000 (the first MIPS processor from Stanford)
popularized the 5-stage pipeline.

1See the Berkeley RISC I processor



EX/MEM

addq %rax, %rdx # %rdx = %rdx + %rax
movq (%rdi, %rsi, 2), %rbx # %rbx = memory[%rdi + %rsi * 2]

I Note how movq is computing an effective address and then
loading data from memory
I Two steps combined into one

I EX stage handles all arithmetic computation
I MEM stage is used to access memory

I skipped if the instruction does not access memory



WB

I The writeback stage isn’t always necessary in simple designs
I But if you can flush a pipeline, then you need to prevent wrong

instruction results from being made visible

I Stage where results are made permanent (sometimes called
“Commit”)
I Values written back to registers

I Also releases any resources occupied by instruction



Dealing with dependences

I General solution, add an interlock
I This is a circuit that delays instructions

I introduces “bubbles” (a no-op) by stalling a stage (stops the
stage) in the pipeline



More sophisticated solutions: Use a compiler!

I Reorder instructions to:
I keep dependent instructions far from each other
I prevent structural hazards
I reordering must preserve program semantics!

I Use branch-delay slots for control dependence
I Instruction after branch is always executed, regardless of

direction of branch
I Can be a NOP instruction
I Now considered to be a poor design practice

I These techniques were used by MIPS (Microprocessor without
Interlocked Pipelined Stages)



Terminology

I Superscalar processor: A processor that can execute more
than one instruction at the same time

I In-order pipeline: Instructions are executed in
(assembly-language) program order
I Note: like on MIPS, the compiler may reorder instructions, but

the pipeline doesn’t

I Out-of-order pipelines: Instructions are executed out-of-order
I In-order fetch
I Out-of-order execute
I In-order retirement
I Most modern high-performance processors

I Speculative pipelines: Pipelines that guess which direction a
branch is going to execute
I Check guess at writeback stage and either flush or commit

This course looks at in-order pipelines, for the others, take CSC251.



A view of the processor
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Does the pipeline affect how you write software?

I Knowledge of the pipeline is crucial to understanding
performance issues

I You can get information on pipeline behaviour using the perf
tool on Linux
I we’ll see next class



References

I A detailed description of the pipeline is given in Chapter 4 of
the textbook

I We will be more software-centric than hardware-centric in this
course
I Take CSC251 if you want to really build a processor at the

hardware level
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