CSC2/452 Computer Organization
The Processor Pipeline

Sreepathi Pai
URCS

October 19, 2022

Outline

Administrivia

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline

Outline

Administrivia

Administrivia

» A2 Part Il will land tomorrow, deadline will be Sunday
October 30, 2022 at 7PM.

» This will be challenging, start early
> Homework #5 is out today
» Due next Wed in class as usual

Outline

Recap

The Processor and RAM (so far)

CpU

Registers

[Fetch| [Decode]

RD: address RD: data
WR: address+data

RAM

Recall hellopi execution statistics (lecture 1)

$ perf stat -e instructions ./a.out
Hello, the value of pi is 3.141593

Performance counter stats for ’./a.out’:
662,172 instructions

0.001168841 seconds time elapsed

The Problem

How do you execute billions of instructions as quickly as possible?

The Performance Equation

_W><t
P

> W, work items to be completed

T

P> e.g., instructions to be executed
P t, the average time per work item
P cost per work item
> P, average parallelism

» Number of work items that can be executed in parallel

» T, total time for execution

Example: Preparing Breakfast

> Work item 1: Toast
» Time for making toast: 2 minutes
> Work item 2: Coffee

» Time for making coffee: 3 minutes
» Not instant!

Prep. Time for Breakfast: Serial

(Coffee) Toast)
| |

3min 2min
Time
» Toast: 2 minutes, Coffee: 3 minutes

Task

» Only Stove available to make breakfast
P> Average Parallelism: P =1
» Work items W =2
> Average Time t = (3 +2)/2
» Total Time: ?

Prep. Time for Breakfast: Parallel

» Toast: 2 minutes, Coffee: 3
minutes
» Stove and Toaster available

» Total Time: 3 minutes

» Work items W =2

» Average Time
t=(3+2)/2

> Average Parallelism: P =
(2x24+1x1)/3=1.66

» Speedup (serial time/parallel
time) is 5/3 = 1.66

» But, requires more

equipment

(Coffee)
g Toast }

2min Tmin

Task

Time

Other ways to speed up breakfast

» Don't eat toast
» Decreases work, W
» Drink instant coffee
» Decreases average time, t

Speeding up Programs

» Do less work (i.e., decrease W)

» fewer instructions
P choose algorithms with fewest operations

» Do cheaper work (i.e., decrease t)
» not all instructions have the same cost
» e.g. integer multiplies are slower than integer shifts
» the algorithm with lower constant costs is better
» purpose of this course: to teach you which instructions are
cheap and which are expensive
» Moore's Law gave us free decreases in t

» Increase parallelism (i.e. increase P)

» only option left if you've already reduced W and t
> take CSC258 to know more

Example: Making a Sandwich

Cheese+Tomato (C&T)

((Toast | = JMelt

2min Tmin 1min
Time
Toast 2 bread slices (2 minute)

Task

v

» Add cheese and tomato slices (1 minute)
» Assuming tomatoes and cheese have to be sliced

v

Melt cheese (1 minute)
» Total time: ?

v

Average Parallelism: ?

Making 3 sandwiches

(Toast)C&T|Meli]
(Toast)C&T|Melt]
(
|

Task

Toast)| C&T|Melt)

||

2min 1min 1min
Time

» Total time: 7
> Average Parallelism: 7

» Equipment needed: 7

» Toasters?

» Khnives?

> Stove? [assume one stove can melt cheese in one sandwich]
» Workers?

Making sandwiches: Observations

» Making one sandwich takes 4 minutes, end-to-end
» Each step is dependent on previous step, no parallelism
» Making multiple sandwiches is highly parallel
» Making each sandwich is independent of the other
» But exploiting that parallelism requires lots of equipment
» Also, as far as sandwich eaters are concerned, they get a one
sandwich every 4 minutes

Pipeline Parallelism in the Kitchen

Sandwich 1 Sandwich 2 Sandwich 3
roaster (Toast | Toast) Toast)

Eilling. (c&t) (c&1) (c&T)

Melt Melt Melt Melt
| I I O N ﬁ&

2min Mmin Imin ¥ 2min ¥ 2min

Time

» Equipment needed?
» Toasters (Toaster station): ?
» Khnives (Filling station): ?
> Stove (Melt station): ?
> Workers?
» Time for first sandwich?

» Time for subsequent sandwiches (indicated by stars)?
» Each sandwich still takes 4 minutes to make

Alternate View: Pipeline Parallelism in the Kitchen

Sandwich1‘ Toast IC&TXMelt]

Sandwich 2 (Toast XC&TXMElt]
Sandwich 3 (Toast XC&TXMElt]
| N S U A VN
2min Mmin Mmin¥ 2min Y 2min
Time

» Same timeline as previous figure, but from perspective of
sandwich instead of a work station

Some performance measures

» Sandwich Latency (also Job Service Time): 4 minutes
» Also pipeline fill time

» Service time (or System Latency) for making sandwiches: 2
minutes

» Time after pipeline is full

» Throughput (rate) of making sandwiches: 1 sandwich every 2
minutes

Pipeline Parallelism

» Used to parallelize many similar (but independent) tasks
» Each task consists of highly dependent steps
» Pipelines consist of (sequential/serial) stages
» Usually correspond to steps of each task
» But each stage can be handling steps from different tasks at a
given time
P> e.g. at Time 5: sandwich 3 in Toaster and sandwich 2 in Filling
» Does not require more equipment than that required by one
task
» May require more “workers"

You're not in culinary class!

How do these techniques apply to instruction execution (our
original problem)?

Outline

Instruction Execution

Steps in Instruction Execution

Instruction execution in a processor consists of at least 3 steps:
» Fetch instruction
» Decode instruction
» Execute instruction

Each step is dependent on the previous one. But there are many
instructions in a program!

Program Execution: Example #1

I1: movq -8(%rbp), %rax
I2: addq %rcx, %rdx

Are I1 and 12 independent of each other?

> |1:
» reads memory: -8(%rbp)
> writes register: %rax

> |2:

P reads register: J%rcx
> writes register: %rdx

Program Execution: Example #2

I3: movq -8(%rbp), %rax
I4: addq %rax, %rdx

Are I3 and 14 independent of each other?
> I3:

» reads memory: -8(%rbp)
> writes register: %rax

> 14:

P reads register: Jrax
> writes register: %rdx

Data Dependences

» |1 and 12 are independent
» Reads and writes do not overlap
» I3 and 14 are dependent
» 13 produces (i.e. writes) value that is consumed (i.e. read) by
14
P |4 execution must wait until I3 produces a value
» Sometimes called a "Data Hazard”, but only by computer
architects

Program Execution: Example #3

test jeax, %heax
jnz L1

movq ...

add ...

div ...

jmp ...

L1i:
xor %eax, heax
ret

» Which instruction follows jnz?

» Which instruction follows ret?

Pipeline State

Fetch | jnz | mova | add)

Decode (jnz XT"OVQ)

Execute jnz

Time >
» If jnz does not jump, then current state of pipeline (green
box) is valid.
» If jnz does make the jump, what must we do?
P can't execute movq and add

Control Dependences

» Can't decide which instruction follows jnz until it finishes
execution

» Could be movq if %eax is zero
» Could be xor (at L1)

» Can't decide which instruction follows ret either
> Need to look at function stack to find return address
» In these cases, the instructions we have fetched and decoded
may be wrong
» Usually, we need to throw them away
» Called a “pipeline flush”
» Sometimes called a “Control Hazard", but only by computer
architects

Program Execution: Example #4

divl %ecx
addq %edi, %esi

» Both divl and addq use the ALU
> But divl takes more time than addq
» addq must wait until divl is done

Structural Dependence/'Hazards’

» Different instructions may require use of the same (type) of
resources

» Instructions must wait until “structure” (e.g. functional unit)
is free

» Could be other structures, e.g. queues
» Kitchen analogy:

» Toast + Coffee with only one stove and no toaster
» Can only toast or make coffee at the same time, not both

Instruction Execution: The Problem

» Could be pipelined
» Each instruction consists of multiple steps
» There are many instructions that must be executed
» Complication: Not all instructions are independent
» Data dependence: Instruction requires results from previous

instruction
» Control dependence: Next instruction depends on execution of

current instruction
» Structural dependence: Instructions may require use of same
structure or some structure is full
» Other complications
» Instructions can take different execution times (e.g. divl vs
addq)

Outline

Instruction Pipelining

Stages

Although a 3-stage pipeline can be used (and sometimes fewer
stages can also be used, usually by eliminating decode!), usually 5
stages are used:

» Instruction Fetch (IF)

» Instruction Decode (ID)

» Instruction Execute (EX)

» Memory (MEM)

» Instruction Writeback (or retirement) (WB)

The MIPS R2000 (the first MIPS processor from Stanford)
popularized the 5-stage pipeline.

1See the Berkeley RISC | processor

EX/MEM

addq %rax, J%rdx # Jrdx
movq (%rdi, Y%rsi, 2), %rbx # Jrbx

%rdx + Yrax
memory [%rdi + Y%rsi * 2]

» Note how movq is computing an effective address and then
loading data from memory

» Two steps combined into one
> EX stage handles all arithmetic computation
» MEM stage is used to access memory
» skipped if the instruction does not access memory

WB

> The writeback stage isn't always necessary in simple designs

» But if you can flush a pipeline, then you need to prevent wrong
instruction results from being made visible

» Stage where results are made permanent (sometimes called
“Commit")

» Values written back to registers

P Also releases any resources occupied by instruction

Dealing with dependences

» General solution, add an interlock
» This is a circuit that delays instructions

> introduces “bubbles” (a no-op) by stalling a stage (stops the
stage) in the pipeline

More sophisticated solutions: Use a compiler!

» Reorder instructions to:

» keep dependent instructions far from each other
» prevent structural hazards
P reordering must preserve program semantics!
» Use branch-delay slots for control dependence
» Instruction after branch is always executed, regardless of
direction of branch
» Can be a NOP instruction
» Now considered to be a poor design practice

» These techniques were used by MIPS (Microprocessor without
Interlocked Pipelined Stages)

Terminology

» Superscalar processor: A processor that can execute more
than one instruction at the same time
» In-order pipeline: Instructions are executed in
(assembly-language) program order
» Note: like on MIPS, the compiler may reorder instructions, but
the pipeline doesn't
» Out-of-order pipelines: Instructions are executed out-of-order

» In-order fetch

» Qut-of-order execute

» In-order retirement

» Most modern high-performance processors

» Speculative pipelines: Pipelines that guess which direction a
branch is going to execute

» Check guess at writeback stage and either flush or commit

This course looks at in-order pipelines, for the others, take CSC251.

A view of the processor

CpPU

Registers

[Fetch|[Decode] [Execute|[Memory | [writeback]

ALU

-

RAM

Outline

Software and the Pipeline

Does the pipeline affect how you write software?

» Knowledge of the pipeline is crucial to understanding
performance issues
» You can get information on pipeline behaviour using the perf
tool on Linux
» we'll see next class

References

» A detailed description of the pipeline is given in Chapter 4 of
the textbook

> We will be more software-centric than hardware-centric in this
course

» Take CSC251 if you want to really build a processor at the
hardware level

	Administrivia
	Recap
	Instruction Execution
	Instruction Pipelining
	Software and the Pipeline

