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Administrivia

I Homework #7 due today
I Assignment #4 is out

I Due date: Tuesday, Nov 22, 11:59PM
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Process-based Concurrency

I Create multiple processes to handle multiple “work items” (or
requests)
I fork is cheap
I Resources (CPU, Memory) managed by OS

I Use OS-based interprocess communication (IPC) mechanisms
to communicate
I Shared memory
I Semaphores (Named and unnamed)
I Files/Pipes, etc.



Some properties of process-based concurrency

I Each process is isolated from the other
I By design
I “Shared nothing” concurrency

I Processes have to opt-in to share data
I Must use OS services (i.e. system calls) to do so

I Cost of sharing mechanisms can vary
I Some are cheap like mmap
I Others are less cheap, like semaphores



Where is process-based concurrency used?

I Web Browsers
I Each tab of your web browser is a separate process
I Security? Reliability?

I Distributed Computing
I The processes are usually not on the same machine
I Remote procedure calls (RPC)
I e.g., SETI@HOME or Folding@HOME
I e.g., nearly every website

I High-performance Cluster Computing
I A cluster is a connected network of computers
I One of the many possible designs for supercomputers (but

most popular right now)
I “Message-passing”, usually through MPI



An alternative: Thread-based parallelism

I Thread-based parallelism
I Notion of a “thread of execution”
I A thread is nearly always just a program counter + stack
I Compare to process which has its own address space, etc.

I Also called “shared memory parallelism”
I All threads share the same address space

I Each thread can read/write other threads data directly
I Without going through the OS



Two prominent implementations of threading

I User-mode threading
I Threads are invisible to OS
I OS only sees a process
I Process manages creation, termination and scheduling of

threads

I OS-level threading
I Threads are visible to OS
I OS sees both processes and threads
I Process uses OS facilities to create and terminate threads
I OS schedules threads



Our focus today: OS-level threading

I OS-level threading is supported in Unix-like systems through
POSIX Threads
I Usually referred to as pthreads

I You need to link your program with libpthread
I gcc -pthread yourfile.c

I C11 introduces threads
I #include <threads.h>
I Useful when programming non-POSIX systems
I Lacks many features of POSIX threads (e.g. barriers)
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Threads Concepts

I Threads are created using pthread create
I Processes created using fork/execve
I Each thread has a unique thread ID (within the process)

I A new thread starts at a specified function
I Recall, a fork starts at instruction after call to fork
I And, execve starts in main

I A thread exits using pthread exit
I This terminates the process only if this was the last thread

I Threads can wait for each other using pthread join
I Just like waitpid



Advantages of threads

I Very lightweight (compared to processes)
I Share the same address space as other threads

I Same (global) data and heap
I So all global variables and malloc’ed data is shared by default
I But different stacks, so all function-local variables are still

private

I Threads can read/write each others data directly
I Using load/store instructions



Disadvantages of threads

I Share the same address space as other threads
I Same (global) data and heap
I So all global variables and malloc’ed data is shared by default
I But different stacks, so all function-local variables are still

private

I Threads can read/write each others data directly
I “Shared everything”
I No protection
I Programmers must carefully control access to all shared data



Issues with Shared Everything: Thread safety

I If you’re writing a program using pthreads, you’re aware of
what data is shared and not in your code
I And you will use mutual exclusion mechanisms to correctly

order accesses to shared data

I But what about all the code written by others that you’re
using?
I e.g. printf, fopen, etc.
I Some of these functions were designed in a pre-threads world
I Do they store internal data that might inadvertently be shared

by multiple threads?



The rand Function

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

I The rand function returns a (pseudo-)random value
I The srand function sets the seed for the next invocation of

rand
I The same seed produces the same random number sequence

I How does srand communicate the seed value to rand?



One possible implementation

unsigned int glseed;

void srand(unsigned int seed) {
glseed = seed;

}

int rand() {
... read glseed to produce next random number ...
... store next random number in glseed ...

}

I This implementation uses global variables (i.e. glseed) to
communicate the seed from srand to rand

I What will happen when rand is called by different threads?



Thread Unsafe Functions

I A thread unsafe function is a function that is not designed to
be called (at the same time) by multiple threads

I Some functions in C and POSIX cannot be used in a
thread-safe manner
I A list of such functions is available in the pthreads manual

page
I They usually have thread-safe replacements, e.g. rand r for

rand



Thread-Safe Functions

int rand_r(unsigned int *seedp);

I A thread-safe function is a function that can be safely called
(at the same time) by multiple threads

I Unless explicitly noted, functions in C and POSIX are required
to thread-safe
I The manual page for each function contains a note on this

(e.g. “MT-Safe”)

I Common strategy is to expose any hidden state to the user
I e.g., rand r takes the seed as input



Thread Unsafe Data

#include <errno.h>

int errno;

I The errno global variable contains the error code of the last
system or library call

I If two threads both encounter an error, what should the value
of errno contain?



Thread-safe data

I Newer versions of POSIX redefine errno to be thread-specific
global data
I instead of process-specific global data

I Each thread gets its own copy of errno



A related concept: Re-entrant Functions

I A re-entrant function is a function that can be “re-entered”
even when another call to it is in progress
I POSIX calls these “async-signal-safe”

I A program installs a signal handler for SIGCHLD
I It then calls printf in main

I But while printf is executing, you receive the signal
I And in the signal handler you call printf to print a debug

message
I What happens to the first printf call still in progress?

I Note: no threads are used in this example



Undefined behaviour

I None of the functions in stdio.h are re-entrant

I Invoking any of these functions when a call is in progress (in
the same thread) results in undefined behaviour

I However, printf is thread safe (required since C11)
I It can be called even when a call is in progress in a different

thread

I All re-entrant functions are thread safe IF called on
thread-private data
I Not all thread-safe functions are re-entrant
I Usually applies when writing signal handlers



Writing Thread-Safe Functions

I Thread-unsafe functions access shared data without
synchronization

I Therefore, to make a function thread safe, add
synchronization
I e.g. use semaphores for mutual exclusion



Writing Re-entrant Functions

I Re-entrant functions should not use synchronization
I Re-entrant functions must only access data that is:

I a function-local variable, or
I an argument passed to the function

I Re-entrant functions are also thread safe if their arguments
are thread-private
I Shared data as arguments would violate thread-safety because

re-entrant functions do not use synchronization



Pitfalls of Threads

I Synchronization and ordering must be used for correctness
I Similar to processes

I Shared by default data
I All global variables and malloc
I All pointers are in the same address space

I Must only use thread-safe functions
I Or re-entrant functions with thread-private data
I A consequence of shared everything...
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Sum of n numbers, using threads

/* holds arguments to thread function */
struct thread_arg {

int i;
int *a;
int N;
int NPERTHREAD;
atomic_uint *sum;
pthread_t tid;

};

void *tsum(void *arg) {
struct thread_arg *ta = (struct thread_arg *) arg;

printf("In thread %d, adding array elements from %d\n", ta->i,
ta->i * ta->NPERTHREAD);

for(int j = ta->i * ta->NPERTHREAD;
j < (ta->i * ta->NPERTHREAD + ta->NPERTHREAD) && j < ta->N; j++) {

*ta->sum += ta->a[j];
}

printf("In thread %d, sum is %d\n", ta->i, *ta->sum);
pthread_exit(NULL);

}



Code explanation

I Thread entry functions (here tsum) can only accept a single
void * argument

I We use that to send a structure containing all the arguments
I We could avoid this in fork because child processes would

start after fork in main
I But now, the thread will start in tsum, which has no access to

variables in main

I The code within tsum is not much altered from the code in
the fork() variant
I Except all arguments are read from the ta structure

I Note the void * return type of thread function
I This function calls pthread exit explicitly
I If you used return instead, pthread exit would be called

implicitly with the return value: return NULL is equivalent to
pthread exit(NULL)



Threads: Initializing arguments

atomic_uint sum = 0;
NPERTHREAD = (N+nthread-1)/nthread;

struct thread_arg *ta = calloc(nthread, sizeof(struct thread_arg));

for(int i = 0; i < nthread; i++) {
ta[i].a = a;
ta[i].NPERTHREAD = NPERTHREAD;
ta[i].N = N;
ta[i].sum = &sum;

}



Threads: Creating threads

/* loop that creates threads */
for(int i = 0; i < nthread; i++) {
ta[i].i=i;
if(pthread_create(&ta[i].tid, NULL, tsum, &ta[i]) != 0) {

fprintf(stderr, "ERROR: Failed to create thread\n");
exit(1);

}
}



Threads: Waiting for threads

int s = 0;
void *res;
for(int i = 0; i < nthread; i++) {
s = pthread_join(ta[i].tid, &res);
if(s != 0) {

fprintf(stderr, "ERROR: Could not join\n");
exit(2);

}
}

printf("In main, sum is %d\n", sum);



Synchronization

I Semaphores can still be used with threads
I sem init, sem wait, and sem post

I But PThreads also offers other synchronization mechanisms
I Mutexes: pthread mutex init, ...
I Barriers: pthread barrier init, ...
I Condition variables: pthread cond signal, ...



Mutexes

I Like binary semaphores

I Call pthread mutex init to initialize a mutex variable
I All threads wishing to enter a critical section call

pthread mutex lock on a shared mutex variable
I This attempts to “obtain a lock”
I It will wait if the lock is already taken by another thread

I A thread that has the lock will call pthread mutex unlock
to exit the critical section
I One of the waiting threads will then be allowed in



Barriers

I Barriers cause threads to wait until a pre-determined number
of threads arrive at the barrier
I Usually, the number of threads is all the threads

I Barriers are commonly used to order phases of program
execution
I Each thread executes a phase independently, and then waits

for all other threads to complete the phase before moving to
the next

I Call pthread barrier init to initialize a barrier variable
I You need to specify the number of threads

I Each thread calls pthread barrier wait on the barrier
variable
I This will force thread to wait until all other threads reach the

barrier

I When the last thread arrives at the barrier, all threads proceed



Condition Variables

I Condition variables allow threads to wait for condition to be
true
I Efficient alternative to “spinning” (i.e. a loop that constantly

checks a variable)

I A threads locks a mutex, and waits on a condition variable
that becomes associated with that mutex
I The mutex is unlocked and the thread put to sleep in one

atomic action
I When the condition becomes true, the thread wakes after the

lock is re-acquired
I Example: Producer puts item in queue, consumer thread wakes

up and can immediately dequeue it

I A thread can “wake up” the waiting threads by “signalling”
the condition



Condition Variables: API

I Call pthread cond init to initialize a condition variable
I A thread calls pthread cond wait on the condition variable

and a mutex
I This causes it to wait until condition variable is “signalled”

I A thread calls pthread cond signal to wake up waiting
threads
I Wakes up one thread
I Can also call pthread cond broadcast to wake up all waiting

threads
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Multiple Processors and Cores

I You can run concurrent code on a system with 1 processor
I Thanks to time sharing

I But most computers have multiple cores today
I Each core is an independent computational unit

I Systems can also have multiple processors
I Each processor contains multiple cores
I Rare in consumer-grade systems



Mapping Processes and Threads to Cores

I The OS scheduler maps processes and threads to cores
I It is possible to “pin” threads/processes to certain cores

I Avoids scheduling overhead
I Can improve performance in some situations

I On Linux, the sched setaffinity function allows you to set
thread affinities
I Can also use the pthread setaffinity np function



A Sneak Peek at Cache Coherence

I Recall that caches contain copies of data variables
I This is fine when only one process/thread is accessing the data

I What happens when different threads access shared data?
I Core 1 has shared variable sum in its cache
I Will Core 2 try to get sum from memory?



Cache Coherence

I Cache coherence is a hardware mechanism to locate copies of
a piece of data and use the “latest” version
I Usually, the last written version

I Core 2 will send a request for sum
I Core 1 will reply to that request
I RAM may also reply, but Core 1 has more recent version and

will be used by Core 2

I Coherence protocols also prevent multiple cores from writing
to the same piece of data

I Cache coherence is covered in CS2/458, and also in CS2/451
and (possibly) ECE404



References

I Chapter 12
I Except 12.2 (I/O Multiplexing)
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