
CSC2/452 Computer Organization
Threading and Parallelism

Sreepathi Pai

URCS

November 16, 2022

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Administrivia

I Homework #7 due today
I Assignment #4 is out

I Due date: Tuesday, Nov 22, 11:59PM

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Process-based Concurrency

I Create multiple processes to handle multiple “work items” (or
requests)
I fork is cheap
I Resources (CPU, Memory) managed by OS

I Use OS-based interprocess communication (IPC) mechanisms
to communicate
I Shared memory
I Semaphores (Named and unnamed)
I Files/Pipes, etc.

Some properties of process-based concurrency

I Each process is isolated from the other
I By design
I “Shared nothing” concurrency

I Processes have to opt-in to share data
I Must use OS services (i.e. system calls) to do so

I Cost of sharing mechanisms can vary
I Some are cheap like mmap
I Others are less cheap, like semaphores

Where is process-based concurrency used?

I Web Browsers
I Each tab of your web browser is a separate process
I Security? Reliability?

I Distributed Computing
I The processes are usually not on the same machine
I Remote procedure calls (RPC)
I e.g., SETI@HOME or Folding@HOME
I e.g., nearly every website

I High-performance Cluster Computing
I A cluster is a connected network of computers
I One of the many possible designs for supercomputers (but

most popular right now)
I “Message-passing”, usually through MPI

An alternative: Thread-based parallelism

I Thread-based parallelism
I Notion of a “thread of execution”
I A thread is nearly always just a program counter + stack
I Compare to process which has its own address space, etc.

I Also called “shared memory parallelism”
I All threads share the same address space

I Each thread can read/write other threads data directly
I Without going through the OS

Two prominent implementations of threading

I User-mode threading
I Threads are invisible to OS
I OS only sees a process
I Process manages creation, termination and scheduling of

threads

I OS-level threading
I Threads are visible to OS
I OS sees both processes and threads
I Process uses OS facilities to create and terminate threads
I OS schedules threads

Our focus today: OS-level threading

I OS-level threading is supported in Unix-like systems through
POSIX Threads
I Usually referred to as pthreads

I You need to link your program with libpthread
I gcc -pthread yourfile.c

I C11 introduces threads
I #include <threads.h>
I Useful when programming non-POSIX systems
I Lacks many features of POSIX threads (e.g. barriers)

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Threads Concepts

I Threads are created using pthread create
I Processes created using fork/execve
I Each thread has a unique thread ID (within the process)

I A new thread starts at a specified function
I Recall, a fork starts at instruction after call to fork
I And, execve starts in main

I A thread exits using pthread exit
I This terminates the process only if this was the last thread

I Threads can wait for each other using pthread join
I Just like waitpid

Advantages of threads

I Very lightweight (compared to processes)
I Share the same address space as other threads

I Same (global) data and heap
I So all global variables and malloc’ed data is shared by default
I But different stacks, so all function-local variables are still

private

I Threads can read/write each others data directly
I Using load/store instructions

Disadvantages of threads

I Share the same address space as other threads
I Same (global) data and heap
I So all global variables and malloc’ed data is shared by default
I But different stacks, so all function-local variables are still

private

I Threads can read/write each others data directly
I “Shared everything”
I No protection
I Programmers must carefully control access to all shared data

Issues with Shared Everything: Thread safety

I If you’re writing a program using pthreads, you’re aware of
what data is shared and not in your code
I And you will use mutual exclusion mechanisms to correctly

order accesses to shared data

I But what about all the code written by others that you’re
using?
I e.g. printf, fopen, etc.
I Some of these functions were designed in a pre-threads world
I Do they store internal data that might inadvertently be shared

by multiple threads?

The rand Function

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

I The rand function returns a (pseudo-)random value
I The srand function sets the seed for the next invocation of

rand
I The same seed produces the same random number sequence

I How does srand communicate the seed value to rand?

One possible implementation

unsigned int glseed;

void srand(unsigned int seed) {
glseed = seed;

}

int rand() {
... read glseed to produce next random number ...
... store next random number in glseed ...

}

I This implementation uses global variables (i.e. glseed) to
communicate the seed from srand to rand

I What will happen when rand is called by different threads?

Thread Unsafe Functions

I A thread unsafe function is a function that is not designed to
be called (at the same time) by multiple threads

I Some functions in C and POSIX cannot be used in a
thread-safe manner
I A list of such functions is available in the pthreads manual

page
I They usually have thread-safe replacements, e.g. rand r for

rand

Thread-Safe Functions

int rand_r(unsigned int *seedp);

I A thread-safe function is a function that can be safely called
(at the same time) by multiple threads

I Unless explicitly noted, functions in C and POSIX are required
to thread-safe
I The manual page for each function contains a note on this

(e.g. “MT-Safe”)

I Common strategy is to expose any hidden state to the user
I e.g., rand r takes the seed as input

Thread Unsafe Data

#include <errno.h>

int errno;

I The errno global variable contains the error code of the last
system or library call

I If two threads both encounter an error, what should the value
of errno contain?

Thread-safe data

I Newer versions of POSIX redefine errno to be thread-specific
global data
I instead of process-specific global data

I Each thread gets its own copy of errno

A related concept: Re-entrant Functions

I A re-entrant function is a function that can be “re-entered”
even when another call to it is in progress
I POSIX calls these “async-signal-safe”

I A program installs a signal handler for SIGCHLD
I It then calls printf in main

I But while printf is executing, you receive the signal
I And in the signal handler you call printf to print a debug

message
I What happens to the first printf call still in progress?

I Note: no threads are used in this example

Undefined behaviour

I None of the functions in stdio.h are re-entrant

I Invoking any of these functions when a call is in progress (in
the same thread) results in undefined behaviour

I However, printf is thread safe (required since C11)
I It can be called even when a call is in progress in a different

thread

I All re-entrant functions are thread safe IF called on
thread-private data
I Not all thread-safe functions are re-entrant
I Usually applies when writing signal handlers

Writing Thread-Safe Functions

I Thread-unsafe functions access shared data without
synchronization

I Therefore, to make a function thread safe, add
synchronization
I e.g. use semaphores for mutual exclusion

Writing Re-entrant Functions

I Re-entrant functions should not use synchronization
I Re-entrant functions must only access data that is:

I a function-local variable, or
I an argument passed to the function

I Re-entrant functions are also thread safe if their arguments
are thread-private
I Shared data as arguments would violate thread-safety because

re-entrant functions do not use synchronization

Pitfalls of Threads

I Synchronization and ordering must be used for correctness
I Similar to processes

I Shared by default data
I All global variables and malloc
I All pointers are in the same address space

I Must only use thread-safe functions
I Or re-entrant functions with thread-private data
I A consequence of shared everything...

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Sum of n numbers, using threads

/* holds arguments to thread function */
struct thread_arg {

int i;
int *a;
int N;
int NPERTHREAD;
atomic_uint *sum;
pthread_t tid;

};

void *tsum(void *arg) {
struct thread_arg *ta = (struct thread_arg *) arg;

printf("In thread %d, adding array elements from %d\n", ta->i,
ta->i * ta->NPERTHREAD);

for(int j = ta->i * ta->NPERTHREAD;
j < (ta->i * ta->NPERTHREAD + ta->NPERTHREAD) && j < ta->N; j++) {

*ta->sum += ta->a[j];
}

printf("In thread %d, sum is %d\n", ta->i, *ta->sum);
pthread_exit(NULL);

}

Code explanation

I Thread entry functions (here tsum) can only accept a single
void * argument

I We use that to send a structure containing all the arguments
I We could avoid this in fork because child processes would

start after fork in main
I But now, the thread will start in tsum, which has no access to

variables in main

I The code within tsum is not much altered from the code in
the fork() variant
I Except all arguments are read from the ta structure

I Note the void * return type of thread function
I This function calls pthread exit explicitly
I If you used return instead, pthread exit would be called

implicitly with the return value: return NULL is equivalent to
pthread exit(NULL)

Threads: Initializing arguments

atomic_uint sum = 0;
NPERTHREAD = (N+nthread-1)/nthread;

struct thread_arg *ta = calloc(nthread, sizeof(struct thread_arg));

for(int i = 0; i < nthread; i++) {
ta[i].a = a;
ta[i].NPERTHREAD = NPERTHREAD;
ta[i].N = N;
ta[i].sum = ∑

}

Threads: Creating threads

/* loop that creates threads */
for(int i = 0; i < nthread; i++) {
ta[i].i=i;
if(pthread_create(&ta[i].tid, NULL, tsum, &ta[i]) != 0) {

fprintf(stderr, "ERROR: Failed to create thread\n");
exit(1);

}
}

Threads: Waiting for threads

int s = 0;
void *res;
for(int i = 0; i < nthread; i++) {
s = pthread_join(ta[i].tid, &res);
if(s != 0) {

fprintf(stderr, "ERROR: Could not join\n");
exit(2);

}
}

printf("In main, sum is %d\n", sum);

Synchronization

I Semaphores can still be used with threads
I sem init, sem wait, and sem post

I But PThreads also offers other synchronization mechanisms
I Mutexes: pthread mutex init, ...
I Barriers: pthread barrier init, ...
I Condition variables: pthread cond signal, ...

Mutexes

I Like binary semaphores

I Call pthread mutex init to initialize a mutex variable
I All threads wishing to enter a critical section call

pthread mutex lock on a shared mutex variable
I This attempts to “obtain a lock”
I It will wait if the lock is already taken by another thread

I A thread that has the lock will call pthread mutex unlock
to exit the critical section
I One of the waiting threads will then be allowed in

Barriers

I Barriers cause threads to wait until a pre-determined number
of threads arrive at the barrier
I Usually, the number of threads is all the threads

I Barriers are commonly used to order phases of program
execution
I Each thread executes a phase independently, and then waits

for all other threads to complete the phase before moving to
the next

I Call pthread barrier init to initialize a barrier variable
I You need to specify the number of threads

I Each thread calls pthread barrier wait on the barrier
variable
I This will force thread to wait until all other threads reach the

barrier

I When the last thread arrives at the barrier, all threads proceed

Condition Variables

I Condition variables allow threads to wait for condition to be
true
I Efficient alternative to “spinning” (i.e. a loop that constantly

checks a variable)

I A threads locks a mutex, and waits on a condition variable
that becomes associated with that mutex
I The mutex is unlocked and the thread put to sleep in one

atomic action
I When the condition becomes true, the thread wakes after the

lock is re-acquired
I Example: Producer puts item in queue, consumer thread wakes

up and can immediately dequeue it

I A thread can “wake up” the waiting threads by “signalling”
the condition

Condition Variables: API

I Call pthread cond init to initialize a condition variable
I A thread calls pthread cond wait on the condition variable

and a mutex
I This causes it to wait until condition variable is “signalled”

I A thread calls pthread cond signal to wake up waiting
threads
I Wakes up one thread
I Can also call pthread cond broadcast to wake up all waiting

threads

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Multiple Processors and Cores

I You can run concurrent code on a system with 1 processor
I Thanks to time sharing

I But most computers have multiple cores today
I Each core is an independent computational unit

I Systems can also have multiple processors
I Each processor contains multiple cores
I Rare in consumer-grade systems

Mapping Processes and Threads to Cores

I The OS scheduler maps processes and threads to cores
I It is possible to “pin” threads/processes to certain cores

I Avoids scheduling overhead
I Can improve performance in some situations

I On Linux, the sched setaffinity function allows you to set
thread affinities
I Can also use the pthread setaffinity np function

A Sneak Peek at Cache Coherence

I Recall that caches contain copies of data variables
I This is fine when only one process/thread is accessing the data

I What happens when different threads access shared data?
I Core 1 has shared variable sum in its cache
I Will Core 2 try to get sum from memory?

Cache Coherence

I Cache coherence is a hardware mechanism to locate copies of
a piece of data and use the “latest” version
I Usually, the last written version

I Core 2 will send a request for sum
I Core 1 will reply to that request
I RAM may also reply, but Core 1 has more recent version and

will be used by Core 2

I Coherence protocols also prevent multiple cores from writing
to the same piece of data

I Cache coherence is covered in CS2/458, and also in CS2/451
and (possibly) ECE404

References

I Chapter 12
I Except 12.2 (I/O Multiplexing)

	Administrivia
	Recap
	Threading Concepts
	PThreads
	Hardware Support for Concurrency

