
CSC2/452 Computer Organization
Mixed Language Programming

Sreepathi Pai

URCS

December 7, 2022

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Administrivia

I A5 (final assignment) is out
I Due Dec 13, 2022 at 7PM
I One more interesting bug before whole class gets extra credit

I All homework grades and solutions available
I Review them and ask questions on Blackboard

I Two review lectures next week

I Exam will be 90–120 minutes, one sheet of handwritten notes
allowed

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Reason #1: Reuse

I Reuse
I The best way to write bug free code is not write code at all
I The second best way is to reuse existing, well-tested, already

available code

I Example: Numpy
I numpy: Numerical programming for Python
I Matrix manipulations, multiplication, etc.
I Much code reused from earlier projects like BLAS

Reason #2: Performance

I Performance
I Many languages focus on productivity, not raw performance
I 80% of the code doesn’t need performance (e.g. UI, File I/O)

I Find hotspots in your code and write them in language
capable of delivering high performance
I Using a tool called a ‘profiler’

I Example: Numpy
I when you multiply matrices in Numpy, it almost inevitably calls

gemm in BLAS

Reason #3: Accelerators/Machine capabilities

I New instructions and extensions
I “Advanced Matrix Extension” (AMX) Intel’s matrix multiply

instruction
I “Advanced Vector Extensions” (AVX) for vector/SIMD

processing
I “Multimedia Extensions” (MMX) for video processing

I New accelerators
I GPUs require you to write code in CUDA or OpenCL
I Shouldn’t have to rewrite entire application in CUDA/OpenCL

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Native Code

I Languages that compile to native code (i.e. machine
code/assembly language)
I C++ program calls C functions (or vice versa)
I Rust programs calls C functions
I C calls CUDA

I Mostly for reuse or to access machine capabilities
I Relatively easy:

I The programs ultimately compile to assembly language
I Just compile them individually and link them

I Interoperability must be ensured:
I Each language must follow the ABI
I Each language has its own rules (naming, calling conventions,

etc.)
I Each language has its own data formats

Example: C++ calling C

Contents of test.cpp file.
#include <cstdio>

int add2num(int a, int b);

int main(int argc, char *argv[]) {
int c, d;

c = 3;
d = 4;

c = add2num(c, d);
}

Contents of add2num.c file.
int add2num(int a, int b) {

return a + b;
}

Compiling and Linking

g++ -c test.cpp -o test.o
gcc -c add2num.c -o add2num.o
gcc test.o -o mlp_compiled
test.o: In function ‘main’:
test.cpp:(.text+0x28): undefined reference to ‘add2num(int, int)’
collect2: error: ld returned 1 exit status
make: *** [mlp_compiled] Error 1

Name Mangling in C++

C++ supports polymorphism, so function names are mangled at
the assembly level.
Here is the name the C++ program is looking for (generated by
C++ compiler):

objdump -t test.o
[...]

0000000000000000 *UND* 0000000000000000 _Z7add2numii

Here is the name the C compiler generated:
objdump -t add2num.o
[...]
0000000000000000 g F .text 0000000000000014 add2num

Handling name mangling

#include <cstdio>

extern "C" int add2num(int a, int b);

int main(int argc, char *argv[]) {
int c, d;

c = 3;
d = 4;

c = add2num(c, d);
}

Now, recompilation works
gcc -c add2num.c -o add2num.o
g++ -c test2.cpp -o test2.o
gcc add2num.o test2.o -o mlp_compiled_2

Bytecode Languages: The easy cases

I Usually, but not always, interpreted
I They don’t compile to assembly

I Byte code programs calling each other
I Usually all need to run on top of the same VM/interpreter
I Examples: IronPython and C# (.NET)
I Or: Jython and Java (JVM)
I Logically similar to native languages, but more “natural” since

all languages follow the VM rules
I Interesting combination: JavaScript calling WebAssembly

(both are bytecode)

Bytecode Languages: The hard cases

I Byte code calling Native code
I Python calling C
I Java calling C

I Native code calling byte code
I C calling Python functions

I These almost always need “marshalling”
I Converting data types between VM and native representations
I Transferring control between native and byte code/VM code

correctly

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Using asm in C

#include <stdio.h>

int add2num(int a, int b) {
asm("addl %1, %0" : "+r" (a) : "r" (b));
return a;

}

int main(void) {
printf("%d\n", add2num(1, 3));

}

I asm keyword contains assembly opcode

I Also contains argument references %0

I Also contains information on how to pass arguments to
assembly instruction
I Here r means register
I The + indicates the register will be modified

Alternatives to writing asm

I Use assembly-language intrinsics
I Basically assembly language dressed up to look like C functions
I Example: mm256 mul pd corresponds to the VMULPD

instruction

I Most commonly for SIMD functionality
I Look exactly like C function calls, except they may use special

data types
I For mm256 intrinsics, 256-bit values

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Using ctypes

I This assumes the C code you want to call is a shared object
(or a DLL).

I The code doesn’t have to be aware of Python’s rules
#!/usr/bin/env python3

import ctypes

libadd2num = ctypes.cdll.LoadLibrary("add2num.so")

libadd2num.add2num.argtypes = [ctypes.c_int, ctypes.c_int]
libadd2num.add2num.restype = ctypes.c_int

print(libadd2num.add2num(1, 3))

I ctypes does the hard work of translating types from Python
to C and vice versa under the hood.

I Another alternative is to use c ffi library

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Writing Modules in C

I Many modules (e.g. ‘import x‘) are written in C

I They’re much more closely integrated with Python
I Called “Extension Modules”

I See the documentation here:
https://docs.python.org/3/extending/extending.html

https://docs.python.org/3/extending/extending.html

Writing Modules in Cython

I Cython allows you to write native code modules in a
Python-like language

I Cython compiles these to Python modules

I Very convenient if you want to speed up code with less effort
than writing in C

I Recommended https://cython.readthedocs.io/en/

latest/src/tutorial/cython_tutorial.html

https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html
https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

Outline

Administrivia

Why Mixed Language Programming?

How to do Mixed Language Programming

Case study I: Assembly in C

Case study II: C in Python using FFI

Case study III: C in Python using C Modules and Cython

Pitfalls of Mixed Language Programming

Pure X programming is portable

I “Pure Python Programs”
I Only need the Python interpreter to work
I CPython, PyPy, Jython, IronPython, etc.

I Python + C modules dramatically cuts portability
I tied to Cython and C

Mixed language programming can be brittle

I All languages need to coordinate

I Many languages provide “foreign function interfaces” to make
this easier

I May need to understand all languages at a fairly low level
I Intellectually rewarding

I Not very hard since ultimately everything is assembly

	Administrivia
	Why Mixed Language Programming?
	How to do Mixed Language Programming
	Case study I: Assembly in C
	Case study II: C in Python using FFI
	Case study III: C in Python using C Modules and Cython
	Pitfalls of Mixed Language Programming

