
CSC2/455 Software Analysis and Improvement
Program Analysis II – Model Checking

Sreepathi Pai

URCS

April 24, 2019

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

The Plan

Check for Equivalence

I A: Original source program

I B: Compiler-generated program (e.g. your 3-address code)
I Is A = B?

I Program equivalence problem
I Undecidable in general

Test?

I Develop test cases
I Run B with these test cases

I Works
I Tests may miss bugs

I Also, many programs harder to test
I Don’t have main
I Accept input interactively
I Buggy compilers may introduce infinite loops

Solution

I Ended up using bounded model checking for C
I CBMC

I Allows me to check that certain properties hold across all
executions

I Can still require manual inspection
I And I manually inspected all your results – successful or not

http://www.cprover.org/

Computing the minimum of three numbers

int min_of_3(int x, int y, int z) {
int min3;

if(x > y) {
if(y > z) {

min3 = z;
} else {

min3 = y;
}

} else {
if(x > z) {

min3 = z;
} else {

min3 = x;
}

}

return min3;
}

Adding Assertions

int min_of_3(int x, int y, int z) {
...

__CPROVER_assert(min3 == x || min3 == y || min3 == z,
"must be one of inputs");

__CPROVER_assert(min3 <= x, "<= x");
__CPROVER_assert(min3 <= y, "<= y");
__CPROVER_assert(min3 <= z, "<= z");

return min3;
}

(Note: CBMC can also use existing assert statements)

Verifying

$ cbmc --function min_of_3 filename.c
CBMC version 5.6 64-bit x86_64 linux
...
Removal of function pointers and virtual functions
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 64 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
...

** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min_of_3.assertion.2] <= x: SUCCESS
[min_of_3.assertion.3] <= y: SUCCESS
[min_of_3.assertion.4] <= z: SUCCESS

** 0 of 4 failed (1 iteration)
VERIFICATION SUCCESSFUL

Another implementation

int min_of_3(int x, int y, int z) {
int min3;

if(x > y && y > z) {
min3 = z;

} else {
if(x > y)

min3 = y;
else

min3 = x;
}

__CPROVER_assert(min3 == x || min3 == y || min3 == z,
"must be one of inputs");

__CPROVER_assert(min3 <= x, "<= x");
__CPROVER_assert(min3 <= y, "<= y");
__CPROVER_assert(min3 <= z, "<= z");

return min3;
}

Verifying

CBMC version 5.6 64-bit x86_64 linux
...
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 58 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier
...
Runtime decision procedure: 0.018s

** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min_of_3.assertion.2] <= x: SUCCESS
[min_of_3.assertion.3] <= y: SUCCESS
[min_of_3.assertion.4] <= z: FAILURE

** 1 of 4 failed (2 iterations)
VERIFICATION FAILED

What! My code, wrong?

$ cbmc --trace --function min_of_3 file.c
...

State 17 file min3_2.c line 1 thread 0
--

INPUT x: -1412553063 (10101011110011100010011010011001)

State 19 file min3_2.c line 1 thread 0
--

INPUT y: -1151925590 (10111011010101110000001010101010)

State 21 file min3_2.c line 1 thread 0
--

INPUT z: -1949367656 (10001011110011110000001010011000)

...

State 30 file min3_2.c line 10 function min_of_3 thread 0
--

min3=-1412553063 (10101011110011100010011010011001)

Violated property:
file min3_2.c line 17 function min_of_3
<= z
min3 <= z

Loops: Definite Bounds

for(i = 0; i < 10; i++) {
...

}

CBMC will unroll loop.

Loops: Symbolic Bounds

for(i = 0; i < N; i++)
B;

gets unrolled by a fixed number (B is body), with unroll assert:

i = 0;
if(i < N) {

B;
i++;

if(i < N) {
B;
i++;

assert(N == 2);
}

}

I If assert fails, unrolling was insufficient.
I Not sound!
I Otherwise, conclusion is sound

Other complications

I Pointers, arrays, dynamic memory allocation, etc.

I See CPROVER manual for more details

http://www.cprover.org/cprover-manual/

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Basic Ideas

I Formula ϕ
I Correctness (Safety) property
I Propositional logic
I Example: first argument of all the CPROVER assert

statements

I Intepretation K
I More on this later

I We ask: K |= ϕ?
I Is ϕ true in K?

Transition System

I T = (Q, I ,E , δ)
I set of states Q (e.g. values of all variables)
I initial states I ∈ Q
I action labels E (e.g. program statements)
I (total) transition relation δ ⊂ Q × E × Q

I A run of T is the same as a trace of states
I s0e0s1... where (s0, e0, s1) ∈ δ, and s0 ∈ I

I A reachable state is a state that exists in some run.

Kripke Structures

I Let V be a set of propositions
I e.g. min3 <= x
I e.g. min3 <= y

I A Kripke structure K = (Q, I ,E , δ, λ) is a transition system
where:
I λ : Q → 2V

I λ is a function that maps a state q to the (subset) of
propositions from V that are true in that state
I q |= P where P ∈ V

Kripke structure for our min-of-3 example

q0
{}

q1

x > y

q4

x <= y

q2

y > z

q3

y <= z

q2a
{p, q, r, s}

min3 = z

q3a
{p, q, r, s}

min3 = y

q5

x > z

q6

x <= z

q5a
{p, q, r, s}

min3 = z

q6a
{p, q, r, s}

min3 = x

I Let p be the ”must be one of inputs” proposition

I Let q, r , s be the <= x , <= y , <= z proposition

I (Note: True propositions in internal states not shown)

Invariants

I An invariant is a safety property for the system that holds in
every reachable state

I An inductive invariant holds in the initial state, and is
preserved by all transitions
I including transitions from unreachable states
I more on this when we discuss Hoare Logic

Invariant Checking Algorithm: High level details

I Assume finite Kripke structure
I Given an invariant to check,

I Enumerate all reachable states
I Check that invariant holds in all of them

Invariant Checking Algorithm: Pseudocode

def verify_inv(ks, inv):
done = set()
todo = set()

for s in ks.initial_states():
if s in done: continue

todo.add(s)

while len(todo) > 0:
ss = todo.pop()
done.add(ss)

if not ss.satisfies(inv): return False

for succ in ss.successors():
if succ not in done: todo.add(succ)

return True

based on Figure 3.3 in S. Merz, An introduction to Model Checking.

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Progress

I Does something “good” eventually happen?

I Does the system ever deadlock?
I Does the system livelock?

I An action e is no longer possible after a particular state qi
I These require reasoning over sequences of states

I These can be infinite even in a finite Kripke structure

These properties need a temporal logic, that incorporates notions
of (logical) “time points” into formulae we want to check.

Specifying temporal properties in PTL

I Let σ = q0q1... be a sequence of states
I σi is the state i
I σ|i is the suffix qiqi+1 . . . of σ

I Let ϕ be a formula

I σ |= ϕ if ϕ ∈ λ(σ0)
I Xϕ (also a formula), read as “next ϕ”,

I σ |= Xϕ if σ|1 |= ϕ

I ϕUψ (also a formula), read as “ϕ until ψ”
I σ |= ϕUψ if and only if there exists k ∈ N
I σ|k |= ψ
I for all 1 ≤ i < k , σ|i |= ϕ
I Note: ϕ can continue to hold after k

More temporal properties

I Fϕ, “eventually ϕ”
I trueUϕ

I Gϕ, “always ϕ”
I ¬F¬ϕ

I ϕWψ, “ϕ unless ψ”
I (ϕUψ) ∨ Gψ

I GFϕ

I FGϕ

Some examples of invariants

I G¬(own1 ∧ own2)
I where own1 and own2 are propositions representing states in

which locks for resource are obtained by process 1 and 2

I Other properties (see the reading)
I weak and strong fairness
I precedence
I etc.

Existential and Universal Properties: CTL

I Branching time logic for properties of systems
I Computation Tree Logic (CTL)

I EXϕ, there exists a transition where ϕ holds from current
state

I EGϕ, exists a path from current state where ϕ holds on all
states

I EU, exists a path until...

I Also Ax properties, properties that hold on all possible paths
from current state

Verifying PTL and CTL invariants?

I State sequences of infinite length possible

I How do we check invariants?

Büchi Automata

I ω-automaton
I run on infinite strings

I strings represent state sequences (actually λ(q0)λ(q1)...)
I non-deterministic as well as deterministic

I but non-deterministic Büchi automata more powerful

Büchi Automata Example

Stephan Merz, An Introduction to Model Checking

https://members.loria.fr/SMerz/papers/mc-iste2008.pdf

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Further Reading and Links

I Stephan Merz, An Introduction to Model Checking
I Accessible and good introduction, with links to other material

I Spin Model Checker
I Selected industrial applications

I CACM, ”How Amazon Web Services Uses Formal Methods
I CACM, ”A Decade of Software Model Checking with SLAM

I A segue into compiler verification
I Ken Thompson, Reflections on Trusting Trust, Turing Award

Lecture 1984
I The COMPCERT project

https://members.loria.fr/SMerz/papers/mc-iste2008.pdf
http://spinroot.com/spin/whatispin.html
https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-software-model-checking-with-slam/fulltext
https://dl.acm.org/citation.cfm?id=358210
http://compcert.inria.fr/

	A Tour of CBMC
	Model Checking
	Liveness Properties
	Postscript

