
CSC2/458 Parallel and Distributed Systems

Parallel Memory Systems: Coherence

Sreepathi Pai

February 06, 2018

URCS



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



Traditional View of Memory

• Memory is accessed through

loads/stores

• Memory contents have

addresses

• Smallest unit of access
varies across machines

• Usually 8 bits (i.e. 1 byte)

• Some machines have other
correctness constraints

• e.g. alignment

• x86 has very few

correctness constraints

CPU

Memory



Memory in most machines today

• Memory hierarchy

• Multiple levels of cache
memory

• pron. cash

• Multiple loads/stores can be
in flight at same time

• Called memory-level

parallelism (MLP)

• Stall-on-use, not

stall-on-issue

Pipeline

Memory

Level 1 (L1) 
Cache

Level 2 (L2) 
Cache

Last-level Cache
(LLC)

CPU



Caches

• Caches are faster than main memory

• Closer to pipeline

• Smaller than main memory

• Usually, SRAM instead of DRAM (main memory)

• Caches contain copies of data in main memory

• If address requested by load/store exists in cache: hit

• If address does not exist in cache: miss

• Addresses that hit can be satisfied from the cache

• Addresses that miss are forwarded to next level of memory
hierarchy

• Forwarding continues until found

• What is the last level?



Internal Organization of Caches

• Unit of data organization in
caches: Line

• Line size may vary from

64 to 128 bytes across

CPU models

• Each line is a

non-overlapping chunk of

main memory

• Each line in cache contains
contain:

• State (e.g. valid or

invalid)

• Tag (part of address)

• Data

tagsstate data

0xdae... hello worldvalid line



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



Symmetric Multiprocessors (SMPs)

• Each processor occupies one

“socket”, and are identical

• All processors share same
main memory

• Known as Shared Memory

Multiprocessors

• Not all levels of hierarchy
are shared

• Caches are private

• Not shown: interconnect

between processors

• Superseded by Chip

Multiprocessors

Memory

PipelinePipeline

Level 1 (L1) 
Cache

Level 2 (L2) 
Cache

CPU0

Level 1 (L1) 
Cache

Level 2 (L2) 
Cache

CPU1



Chip Multiprocessors (CMPs)

• Each socket contains

multiple cores (all identical)

• All processors share same

main memory

• Some levels of cache can
also be shared

• Some still private Memory

PipelinePipeline

Level 1 (L1) 
Cache

Core0

Level 1 (L1) 
Cache

Level 2 (L2) 
Cache

Core1

CPU



Reads and writes in xMPs - reads/reads

tagscc data

0xdae...

processor/core

tagscc data

READ 0xdae...

processor/core

Memory

0xdae...

X

X



Reads and writes in xMPs - reads/reads

tagscc data

0xdae...

processor/core

tagscc data

processor/core

Memory

0xdae...

X

X

0xdae... X



Reads and writes in xMPs - read/writes

tagscc data

0xdae...

processor/core

tagscc data

WRITE Y to 0xdae...

processor/core

Memory

0xdae...

X

X

0xdae... X



Reads and writes in xMPs - write/write

tagscc data

0xdae...

processor/core

tagscc data

WRITE Y to 0xdae...

processor/core

Memory

0xdae...

X

X

0xdae... X

WRITE Z to 0xdae...



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



The problem of coherence

• Multiple copies of same address exist in the memory hierarchy

• How do we keep all the copies the same?

• How do we resolve ordering of writes to the same address?

Usually resolved through a coherence protocol.



Coherence Protocols

• Can be transparent (in hardware)

• You might need to implement one in software

• if you’re creating your own caches

• Basic idea: every read and write needs to participate in a
“coherence protocol”

• Usually a finite state machine (FSM)

• Each line in the cache has a state associated with it

• Reads, writes and cache evictions in the coherence domain
may change the line’s coherence state

• Coherence domain can consist other CPUs, I/O devices, etc.

• State determines which actions (reads/writes/evictions) are
valid

• Validity conditions?



MESI coherence protocol

• States in MESI

• Modified: line contains modified data

• Exclusive: line is not shared

• Shared: line is shared read-only

• Invalid: line contains no data



Simplified MESI state diagram

INVALID

SHARED

read from other processor EXCLUSIVE

read from memory

write by other processor

MODIFIED

write by this processor

read by other processor

write by this processorr

write to memory

Solid lines – actions by this processor

Dashed lines – actions by other processor

Many transitions not shown – e.g. INVALID from SHARED, EXCLUSIVE on cache line replacement



The MESI Protocol (Simplified)

• Every cache line begins in INVALID state

• On a read, the cache line is put into:

• EXCLUSIVE: if it was read from memory

• SHARED: if it was read from another copy

• On a write, line is moved to MODIFIED state

• If it was previously SHARED, all other copies are

INVALIDATED

• It will eventually be written back to memory



MESI protocol test

• How many concurrent readers does MESI allow?

• How many concurrent writers does MESI allow?



MESI protocol test 2

• How does the MESI protocol order concurrent writers?



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



Snoop Protocols

• Requires a shared bus among all processors

• All requests to read/write are broadcast on the bus

• All processors “snoop”/listen to memory requests

• If a processor has a copy in
EXCLUSIVE/SHARED/MODIFIED state:

• It responds with a copy of its data

• Moves its line to SHARED

• Processors broadcast “INVALIDATE” to all processors before
writing

• Must wait for acknowledgements



Directory-based Protocols

• Requires a shared structure called “directory”

• Directory tracks contents of every cache in the system

• Addresses only

• Caches talk to directory only

• Directory send messages only to caches that contain affected

data

• Used in systems with large number of processors

• > 8

• Implementation need NOT be a centralized structure



Summary of Cache Coherence

• Reads and writes to shared data involve communication with

other processors

• Expensive

• Possible Serialization bottleneck



Outline

Introduction to Parallel Memory Systems

Memory Systems in Parallel Processors

Coherence

Implementations in Hardware

Implications for Parallel Programs



Shared Variables

Variables that are read/written by multiple threads are called

shared variables.



Compilers and Cache Coherence

int *a;

T0 T1

while(*a < 1000) while(1)
*a = *a + 1; printf("%d\n", *a);



Volatiles

volatile int *a;

T0 T1

while(*a < 1000) while(1)
*a = *a + 1; printf("%d\n", *a);



False Sharing

int sums[NTHREADS];

Tx

for(...)
sums[x] += a[...];



Memory Layout for sums

sums

0

T0 T1 T2 T3 T4 T5 T6 T7

4 8 0xC 0x10 0x14 0x18 0x1C

sums[] occupies a single cache line.



Cache Line Bouncing

• No thread shares data with another thread

• However, thread data resides within the same cache line

• Coherence operates at cache-line granularity

• Every write to the cache line will potentially be serialized



Summary

• Memory locations may be stored in registers by compiler

• Will not participate in cache coherence

• Data layout may cause inadvertent conflicts with each other

• One solution: Privatize and then merge


	Introduction to Parallel Memory Systems
	Memory Systems in Parallel Processors
	Coherence
	Implementations in Hardware
	Implications for Parallel Programs

