
CSC2/458 Parallel and Distributed Systems

PPMI: Synchronization Preliminaries

Sreepathi Pai

February 15, 2018

URCS



Outline

Synchronization Primitives

Transactional Memory

Mutual Exclusion Implementation Strategies

Mutual Exclusion Implementations



Outline

Synchronization Primitives

Transactional Memory

Mutual Exclusion Implementation Strategies

Mutual Exclusion Implementations



Embarrassingly Parallel Programs

What are the characteristics of programs that scale linearly?



Embarrassingly Parallel Programs

No serial portion.

I.e., no communication and synchronization.



Critical Sections

Why should critical sections be short?

[A critical section is a region of code that must be executed by a

single thread at a time.]



Locks

tail_lock.lock() // returns only when lock is obtained

tail = tail + 1

list[tail] = newdata

tail_lock.unlock()



Outline

Synchronization Primitives

Transactional Memory

Mutual Exclusion Implementation Strategies

Mutual Exclusion Implementations



The Promise of Transactional Memory

transaction {
tail += 1;
list[tail] = data;

}

• Wrap critical sections with transaction markers

• Transactions succeed when no conflicts are detected

• Conflicts cause transactions to fail

• Policy differs on who fails and what happens on a failure



Implementation (High-level)

• Track reads and writes

• inside transactions (weak atomicity)

• everywhere (strong atomicity)

• Conflict when

• reads and writes “shared” between transactions

• these may not correspond to programmer-level reads/writes

• Eager conflict detection

• every read and write checked for conflict

• aborts transaction immediately on conflict

• Lazy conflict detection

• check conflicts when transaction end

• May provide abort path

• taken when transactions fail



Actual Implementations

How can we use cache coherence protocols to implement

transactional memory?



Outline

Synchronization Primitives

Transactional Memory

Mutual Exclusion Implementation Strategies

Mutual Exclusion Implementations



Mutual Exclusion

How do n processes co-ordinate to achieve exclusive access to one

or more resources for themselves?



Some strategies

• Take turns

• Tokens

• Time-based

• Queue

• Assume you have exclusive access and detect and resolve

conflicts



Evaluating Strategies: Correctness

Show that mutual exclusion is achieved (under all possible

orderings).

• Does strategy deadlock?

• What are the conditions for deadlock?

• Does strategy create priority inversions?

• What is a priority inversion?



Evaluation: Performance

How do we evaluate performance of, say, a particular

implementation strategy for locks?

• Use execution time for locking and unlocking?



Evaluation: Performance

• Use throughput: Operations/Second

• Vary degree of contention

• I.e. change number of parallel workers

• “Low contention” vs “High contention”

• Operations can either be:

• Application-level operations

• Lock/Unlock operations



Collapse of Ticket Locks in the Linux kernel

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and

Nickolai Zeldovich, ”Non-scalable Locks are Dangerous”



Lock Performance

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and

Nickolai Zeldovich, ”Non-scalable Locks are Dangerous”



Evaluation: Fairness/Starvation

Will all workers that need access to a resource get it?

Consider scheduler queues with shortest-job-first scheduling.



Evaluation: Efficiency

• How much storage is required?

• How many operations are used?

• How much do those operations cost?

• Should you yield or should you spin?



Evaluation: Other Notions

We will examine these notions in more detail in next two lectures:

• Progress

• System-wide progress (“lock-free”)

• Per-thread (“wait-free”)

• Resistance to failure of workers



Outline

Synchronization Primitives

Transactional Memory

Mutual Exclusion Implementation Strategies

Mutual Exclusion Implementations



Can this happen?

T0 T1
a = -5 a = 10

A later read of a returns −10.



Implementation of Locks

All of the below algorithms require only read/write instructions(?):

• Peterson’s Algorithm (for n = 2 threads)

• Filter Algorithm (> 2 threads)

• Lamport’s Bakery Algorithm



Limitations

• for n threads, require n memory locations

• between a write and a read, another thread may have changed

values



Atomic Read–Modify–Write Instructions

• Combine a read–modify–write into a single “atomic” action

• Unconditional

• type sync fetch and add (type *ptr, type value,

...)

• Conditional

• bool sync bool compare and swap (type *ptr, type

oldval, type newval, ...)

• type sync val compare and swap (type *ptr, type

oldval, type newval, ...)

• See GCC documentation

• sync functions are replaced by atomic functions



AtomicCAS

• (Generic) Compare and Swap

• atomic cas(ptr, old, new)

• writes new to ptr if ptr contains old

• returns old

• Only atomic primitive really required

atomic_add(ptr, addend) {
do {

old = *ptr;
} while(atomic_cas(ptr, old, old + addend) != old);

}



Locks that spin/Busy-waiting locks

• Locks are initialized to UNLOCKED

lock(l):
while(atomic_cas(l, UNLOCKED, LOCKED) != UNLOCKED);

unlock(l):
l = UNLOCKED;

• This is a poor design

• Why?

• Suitable only for very short lock holds

• Use random backoff otherwise (e.g. sleep or PAUSE)



Locks that yield during spinning

• Locks are initialized to UNLOCKED

lock(l):
while(atomic_cas(l, UNLOCKED, LOCKED) != UNLOCKED) {

sched_yield(); // relinquish CPU
}



Performance tradeoffs of spin locks

Operation Atomics

Lock unbounded

Unlock 0

• Remember every atomic must be processed serially!



An alternative lock – ticket lock

• Each lock has a ticket associated with it

• Locks and tickets are initialized to 0

lock(l):
// atomic_add returns previous value
my_ticket = atomic_add(l.ticket, 1);

while(l != my_ticket);

unlock(l):
l += 1; // could also be an atomic_add



Performance tradeoffs of ticketlocks

Operation Atomics Reads/Writes

Lock 1 unbounded

Unlock 0 1

• Variations on ticket locks are used as high-performance locks

today

• We’ll study some of these in next lecture.


	Synchronization Primitives
	Transactional Memory
	Mutual Exclusion Implementation Strategies
	Mutual Exclusion Implementations

