
CSC2/458 Parallel and Distributed Systems

Scalable Synchronization

Sreepathi Pai

February 20, 2018

URCS

Outline

Scalable Locking

Barriers

Outline

Scalable Locking

Barriers

An alternative lock – ticket lock

• Each lock has a ticket associated with it

• Locks and tickets are initialized to 0

lock(l):
// atomic_add returns previous value
my_ticket = atomic_add(l.ticket, 1);

while(l != my_ticket);

unlock(l):
l += 1; // increase now serving, could also be an atomic_add

Performance tradeoffs of ticket locks

Operation Atomics Reads/Writes

Lock 1 unbounded

Unlock 0 1

Review of a ticket lock

• 1 atomic per lock(), so O(n) atomics when n threads

contend

• O(1) space per lock

• Unbounded reads/writes

• Lock can be in remote cache

• Generates cache coherence traffic while threads are waiting

• Fair

• Threads are granted locks in FIFO order

• But what happens when threads in queue are pre-empted?

Internals of a ticket lock

• On a lock

• Atomic to increment the ticket

• Read on “now-serving” ticket

• On an unlock

• Increase of “now-serving” ticket

• Broadcast of this update to all readers

Queues vs Broadcast

If you’re standing in a queue, who do you need to monitor?

Queueing Locks

• Use a queue to maintain waiting threads

• Threads in queue acquire locks in FIFO order

• A thread that releases a lock only notifies the next thread in
the queue

• Essentially transferring ownership of the lock

Overview of Lock and Unlock Methods

def lock:
create queue entry for this thread
add entry to queue for lock

if this thread is the first in queue:
we have lock!

else:
wait for lock to be passed to us

def unlock:
pass lock to next thread in queue (if any)

Data Structure for Queue

struct queue_entry {
struct queue_entry *next;
int waiting;

};

• *next is pointer to next entry in queue

• waiting is flag (initially 1) that set to zero when thread is

given ownership of the lock

Data Structure for Lock

struct lock {
struct queue_entry *tail = NULL;

};

• What do lock and unlock methods look like?

The Lock method

void acquire_lock(lock *l) {
struct queue_entry me;

me.next = NULL;
me.waiting = 1;

prev = atomic_swap(l->tail, &me);

if(prev == NULL) {
// nobody waiting for lock
return;

} else {
prev->next = &me;
while(me.waiting);

}
}

What bugs do you see here?

The Correct Lock method

void acquire_lock(lock *l, struct queue_entry *me) {
me->next = NULL;
me->waiting = 1;

write_to_all_fence();

prev = atomic_swap(l->tail, &me);

if(prev == NULL) {
// nobody waiting for lock
me->waiting = 0; // not really needed

} else {
prev->next = &me;
while(me.waiting);

}

// prevent ops in critical section
// from executing before the lock is acquired

read_to_all_fence();
}

The Unlock method

void release_lock(lock *l, struct queue_entry *me) {
if(me->next == NULL) {

// nobody waiting after me
atomic_CAS(l->tail, me, NULL);
return;

} else {
me->next->waiting = 0;

}
}

What bugs do you see here?

The Correct Unlock method

void release_lock(lock *l, struct queue_entry *me) {
struct queue_entry *succ = me->next;

// make all operations in critical section
// visible
all_to_write_fence();

if(succ == NULL) {
if atomic_CAS(l->tail, me, NULL) == me return;
while((succ = me->next) == NULL);

}
succ->waiting = 0;

}

The MCS Lock

What we have just described is the Mellor-Crummey–Scott (MCS)

lock.

• How does the MCS lock compare to the ticket lock?

• In atomics?

• In reads?

• In writes?

• In space?

• In API/interface?

Outline

Scalable Locking

Barriers

Barriers

• Barriers (and Condition variables) are synchronization

mechanisms like locks

• Generally not used for mutual exclusion

• Mostly used for communication/“synchronization”

• Threads wait for other threads to arrive at a barrier

Barrier Interface

• Creation

• barrier.create(n) where n is number of threads

participating

• Waiting for other threads to arrive

• barrier.sync() - blocks until all participating threads have

invoked sync

• Barriers are commonly used many times

• Uncommonly used, but useful sometimes:

• barrier.arrive() – thread has arrived at barrier and moved

on

• Not discussing this, but you will study them

• Destruction

Barrier Creation

struct barrier {
int nthreads;
int arrived;

};

create(n) {
struct barrier *c = calloc(1, sizeof(struct barrier));

c->nthreads = n;
c->arrived = 0;

return c;
}

Barrier Sync High-level overview

def sync(b)
prev = b.arrived++ // atomic fetch and add

while(b.arrived < b.nthreads);

if(prev == b.threads - 1) {
b.arrived = 0;

}

What’s wrong here?

• You need a barrier between leaving the while loop and the
reset to b.arrived

• Otherwise, threads may not all exist

• Cannot distinguish sync() immediately followed by sync()

Sense-reversing barriers

• Separate:

• Count of arriving threads

• Waiting

Sync for a sense-reversing barrier

struct barrier {
int nthreads;
int arrived;
int sense;

};

def sync(b)
prev = b.arrived++

if(prev == b.threads - 1) {
b.arrived = 0;
b.sense = 1;

}

while(b.sense != 1);

b.sense = 0;

• Correct?

• No, same problem as before!

Sync for a sense-reversing barrier: Correct version

struct barrier {
...
int sense;
int *local_sense;

};

def create(n):
// initializes local_sense to zero
b->local_sense = calloc(n, sizeof(int));
b->sense = 0;
...

Continued ...

Sync method implementation

def sync(b)
s = not b->local_sense[me];
b->local_sense[me] = s;

prev = b.arrived++
if(prev == b.threads - 1) {

b.arrived = 0;

// make sure all writes are visible
// before write to sense

all_to_write_fence();
b.sense = s;

}

// different invocations of sync now
// wait for different values of s
while(b.sense != s);

// do not allow operations after barrier to happen
// before this fence
read_to_all_fence();

Scalable Barriers?

• Do all threads need to read sense?

• Barriers are computing a sum

• Can this be done in parallel?

	Scalable Locking
	Barriers

