
CSC2/458 Parallel and Distributed Systems

Parallel Data Structures - II

Sreepathi Pai

February 27, 2018

URCS

Outline

Parallelizing a Counter

Some Non-Blocking Data Structures

Outline

Parallelizing a Counter

Some Non-Blocking Data Structures

A Counter

class SerialCounter:
int counter_value

def add(n):
counter_value += n

def get_count():
return counter_value

A Parallel Counter with Locks

class ParallelCounterLocks:
int counter_value
lock cv

def add(n):
cv.lock()
counter_value += n
cv.unlock()

def get_count():
cv.lock()
return counter_value
cv.unlock()

A Parallel Counter without Locks

class ParallelCounterNoLocks:
int counter_value

def add(n):
atomic_add(&counter_value, n)
write_to_all_fence()

def get_count():
return counter_value

A Faster Parallel Counter without Locks

class ParallelCounterNoLocks:
int counter_value

int thread_local_adds[nthreads] = {0}

def add(n):
thread_local_adds[current_thread_id] += n

def get_count():
old = atomic_add(&counter_value, thread_local_adds[self])
v = old + thread_local_adds[self]
thread_local_adds[self] = 0
return v

The semantics of ParallelCounterNoLocks

• Operations in a thread happen in order for a counter

• Operations from a different thread are not visible to other

threads until that thread calls get count

What are the semantics of ParallelCounterNoLocks?

• Is this equivalent to a sequential counter semantics?

• Why is it not sequentially consistent?

Semantics of Concurrent Objects

Ideally,

• Concurrent objects should exhibit “behavioral” equivalence to

their sequential counterparts

• It should always be possible to find an ordering of operations

on a single concurrent data object

• It should always be possible to compose these individual orders

into a total order of operations across all concurrent objects

• These orderings should be “intuitive”

Why should we follow these semantic requirements?

Fulfilling would allow reasoning about the parallel program as if it

were a sequential program:

• Construct the total order of operations in the parallel program

• Compare the results of the parallel program with the

sequential semantics of the program

Review: Sequential Consistency for Concurrent Objects

• If operations on a concurrent object

• Appear to happen in some serial, interleaved order across

program threads

• While respecting program order within a thread

• Then that object is sequentially consistent

Review: Two sequentially consistent queues

TO: T1:
a: q1.enq(x) x: q2.enq(y)
b: q2.enq(x) y: q1.enq(y)
c: q1.deq() => y z: q2.deq() => x

Ordering rules:

• y → a (implied by c)

• b → x (implied by z)

• a→ b (thread order)

• x → y (thread order)

Why did this happen?

Sequential consistency allows operations on different concurrent

objects to execute out-of-order within the same thread. One

example is highlighted by dashed lines.

Adding some requirements

The effects of an operation must appear to take place:

• instantaneously at a point ...

• ... between its call and return

Timeline with additional requirements

Note, the requirements now imply the following ordering:

• q1.enq(x) happens before q2.enq(x)

• q2.enq(y) happens before q1.enq(y)

• Any interleaving that respects this ordering will not allow
q1.deq() => y and q2.deq() => x

• But may allow other orders (hence I’ve left the return values in

the figure empty)

Linearizability

• By adding a ”real-time” ordering requirement to sequential

consistency, we can build ”linearizable” objects

• Linearizability is composable

• See Herlihy and Wing (TOPLAS ACM Trans. Program. Lang.

Syst. 12, 3 (July 1990), 463-492) for details

• Key practical questions:

• How to achieve “instantaneous” execution?

• How to determine total order for reasoning?

https://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
https://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf

Outline

Parallelizing a Counter

Some Non-Blocking Data Structures

A Parallel Counter with Locks

class ParallelCounterLocks:
int counter_value
lock cv

def add(n):
cv.lock()
counter_value += n
cv.unlock()

def get_count():
cv.lock()
return counter_value
cv.unlock()

• Will a thread ever wait for another thread?

• Yes. In fact, if a thread that is in the critical section is

pre-empted, other threads will wait without progressing.

• This is a blocking counter.

A Parallel Counter with Atomic Add

class ParallelCounterNoLocks:
int counter_value

def add(n):
atomic_add(&counter_value, n)
write_to_all_fence()

def get_count():
return counter_value

• Will a thread ever wait for another thread?

• No.

• This is a non-blocking, wait-free counter.

A Parallel Counter with CAS

class ParallelCounterNoLocks:
int counter_value

def add(n):
do {

old = counter_value
new = old + n

while(atomic_CAS(&counter_value, old, new) != old);
write_to_all_fence()

def get_count():
return counter_value

• Will a thread ever wait for another thread?

• No, but a thread may starve (it may never succeed in the

atomic CAS)

• But some thread will make progress

• This is a non-blocking, lock-free counter.

Progress Guarantees

• Blocking data structures

• These use locks

• Progress: operations complete in a finite number of steps

• Non-blocking data structures

• Wait-free: The system makes progress

• Lock-free: Some thread makes progress

• Obstruction-free: A thread will make progress if not obstructed

A Non-blocking Stack with the ABA problem

node* pop(node** top):
node* old, new
repeat

old := *top
if old = null return null
new := old->next

until CAS(top, old, new)
return old

The Treiber Stack with Counted Pointers

node* stack.pop()
repeat

<o, c> := top
if o = null return null
n := o->next

until CAS(&top, <o, c> , <n, c+1>)

The M&S Queue

Handout: Pg 126 of MLS

	Parallelizing a Counter
	Some Non-Blocking Data Structures

