
CSC2/458 Parallel and Distributed Systems

High-level Parallel Programming Models

Sreepathi Pai

March 6, 2018

URCS



Outline

Higher Level Parallel Programming

OpenMP

Cilk



Outline

Higher Level Parallel Programming

OpenMP

Cilk



Parallel Programming Models

• What can be executed in parallel?

• Parallelization

• Where and when should be it executed?

• Scheduling

• Synchronization



Low-level Parallel Programming

• Parallelization

• Threading

• Multiprocessing

• Scheduling

• Manual (thread pinning, etc.)

• Synchronization

• Manual (locks, barriers, etc.)



Higher-level Parallel Programming Models

• Make parallel programming easy

• for parallel programmers

• Without ”overburdening”

• Programming language designers

• Compiler writers

• Computer architects



Building your own parallel programming models

• Identify parallel patterns

• Embarrassingly parallel

• Reductions

• Producer–Consumer

• etc.

• Provide structures for these parallel patterns

• e.g. parallel for loop – forall

• Programmers use these structures

• Execute in parallel

• Implement structures using lower-level programming models



Outline

Higher Level Parallel Programming

OpenMP

Cilk



OpenMP

• Aimed at shared memory multithreaded programming

• Within a single process and single computer node

• Usually coupled with Message Passing Interface (MPI)

• MPI is used for parallelism across processes and machines

• Not required for OpenMP programs, will discuss MPI in

distributed systems



OpenMP programming model

• C/C++ and Fortran support

• Must be supported by compiler

• gcc/clang both support OpenMP

• Supports programmer-created threads

• But do not need to use them



Vector Addition

void vector_add(int *a, int *b, int *c, int N) {
for(int i = 0; i < N; i++) {

c[i] = a[i] + b[i]
}

}

How would you parallelize this loop using pthreads?



Parallel Programming Pattern in Vector Addition

• Create T threads

• Distribute N/T work to each thread

• N is size of array (or work, or loop iterations, etc.)

• Pattern

• Embarrassingly Parallel

• Data Decomposition

• Also called ”map” pattern



Vector Addition using OpenMP

#include <omp.h>

void vector_add(int *a, int *b, int *c, int N) {
#pragma omp parallel for
for(int i = 0; i < N; i++) {

c[i] = a[i] + b[i]
}
/* implicit barrier after loop*/

}



Vector Sum

void vector_sum(int *a, int N) {
int sum = 0;

for(int i = 0; i < N; i++) {
sum += a[i];

}
}

How would you parallelize this loop using pthreads?



Parallel Programming Pattern in Vector Sum

• Create T threads

• Distribute N/T work to each thread

• N is size of array (or work, or loop iterations, etc.)

• Wait until each thread computes sum

• Compute the sum of these individual sums (recursively and in

parallel)

• Pattern

• Reduction

• Requires associative operator

• Also called ”reduce”



Vector Sum using OpenMP?

void vector_sum(int *a, int N) {
int sum = 0;

#pragma omp parallel for
for(int i = 0; i < N; i++) {

sum += a[i];
}

}

Correct?



Vector Sum using OpenMP

void vector_sum(int *a, int N) {
int sum = 0;

#pragma omp parallel for reduction(+:sum)
for(int i = 0; i < N; i++) {

sum += a[i];
}
/* OpenMP aggregates sum across all threads */

}

Other operators also supported: +, *, -, max, min, &, &&, etc.



Low-level constructs in OpenMP

• Thread creation

• #pragma omp parallel

• (without for)

• Critical Sections

• #pragma omp critical

• Many others

• Usually better integrated with C/C++ than pthreads

• Other ”task parallel” constructs too



Outline

Higher Level Parallel Programming

OpenMP

Cilk



Cilk programming model

• Also C/C++

• Two keywords:

• cilk spawn

• cilk sync



Fibonacci calculation example

int fib(int n)
{

if (n < 2)
return n;

int x = fib(n-1);
int y = fib(n-2);
return x + y;

}



Fibonacci calculation in Cilk

int fib(int n)
{

if (n < 2)
return n;

int x = cilk_spawn fib(n-1);
int y = fib(n-2);

cilk_sync;

return x + y;
}

• cilk spawn will allow fib(n-1) to execute in parallel with

fib

• cilk sync will wait for all spawns from current function to
finish

• All functions contain an implicit cilk sync at exit

• cilk spawn is like fork, cilk sync is like join

• However, these are suggestions, may not actually execute in

parallel



Scheduling in Cilk

• cilk spawn creates two tasks

• Actually one task, and one continuation

• How are these tasks mapped to cores?

• Tasks can produce other tasks



Work stealing in Cilk - I

• Assume each core has a deque (double-ended queue)

• Tasks spawned (and their continuations) are added to the
deque of a core

• And pulled off the head of deque and executed

• Will this keep all cores busy?



Work stealing in Cilk - II

• Assume core runs out of tasks

• It randomly picks another core

• And pulls off a task from the tail of the dequeue and executes

it

• Will this keep all cores busy?



Embarrassingly parallel loops in Cilk

for (int i = 0; i < 8; ++i)
{

cilk_spawn do_work(i);
}
cilk_sync;

• Apparently not a good idea in Cilk

• Why?



Embarrassingly parallel loops in CilkPlus

cilk_for (int i = 0; i < 8; ++i)
{

do_work(i);
}
cilk_sync;



Acknowledgements

Cilk/Cilkplus material from the Cilkplus tutorial

https://www.cilkplus.org/cilk-plus-tutorial

	Higher Level Parallel Programming
	OpenMP
	Cilk

