
CSC2/458 Parallel and Distributed Systems

Clocks

Sreepathi Pai

March 22, 2018

URCS

Outline

The Replica Problem

Logical Clocks

Outline

The Replica Problem

Logical Clocks

Continuity and Contingency Planning

Securities industry regulations require that brokerage firms inform

their clients of their plans to address the possibility of a business

disruption that potentially results from power outages, natural

disasters, or other events. ... The program provides for

continuation of client service within minutes in most cases.

• ...

• In the event that our primary data center became unavailable

for any reason, we would transition to a separate back-up

location, where account access would be made available. Our

data centers are on separate power grids, separate flood plains

and fault lines, and within different transportation networks.

• ...

Replicating Data

• (client1/update1) CREDIT $100

• (client2/update2) APPLY INTEREST 0.05%

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Ensuring order with timestamps

• All clients timestamp their messages using a single clock.

• All replicas process messages in timestamp order.

Distributed clocks

• All clients timestamp their messages using the clocks nearest

to them.

• All clocks need to synchronize with each other

• What are the problems with separate clocks?

TrueTime

• Assign timestamps to all database transactions

• This is an interval

• Use GPS clocks

• derive clock signal from GPS satellites (which carry atomic

clocks)

• Use atomic clocks

• paper refers to them as “armageddon” clocks

• rubidium clocks are about $300

• Synchronization and drift are still issues

• Transactions must be separated by some safe interval to be

ordered

• Failures (including liars) are detected and such machines are

“evicted”

Corbett et al., Spanner: Google’s Globally-Distributed Database, OSDI 2012.

https://research.google.com/archive/spanner.html

Outline

The Replica Problem

Logical Clocks

Logical Clocks: Premise

• Absolute time synchronization among distributed processes is

not required

• Processes must agree on order in which events happen

• not their time

Happens-before

a→ b

is read as event a happens-before event b

• In same process, a→ b if a occurs before b.

• for example, in program order

• If event a is “sending a message”, and event b is “receiving
that message”, then a→ b.

• Messages cannot be received before they are sent

• Messages cannot be transmitted “instantaneously”

Properties of happens-before

• a→ b, b → c

• Is a→ c?

• If neither a→ b nor b → a hold, then a and b are concurrent

Implementing happens-before

• Assume each process has a monotonic clock

• Not synchronized

• Now, each event x is assigned a timestamp according to the
local process

• C (a) is timestamp of event a

• Assume a→ b (e.g. event a is sending of message, event b is
receiving of message)

• C (a) timestamp assigned by sender

• C (b) timestamp assigned by receiver

• What relationship must hold between C (a) and C (b)?

Implementing happens-before with timestamps

One possible relationship that preserves properties of

happens-before.

If a→ b, then C (a) < C (b).

Don’t we still need synchronization?

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m
1

m
2

m
3

m
4

P
1

P
2

P
3

Lamport’s logical clocks

m1

m2

m3

m4

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P adjusts2

its clock

P adjusts1

its clock

P1 P2 P3

70

76

61

69

77

85

Implementing Lamport’s logical clocks

Adjust local clock

Message is received

Adjust local clock

and timestamp message

Application sends message

Middleware sends message

Application layer

Middleware layer

Network layer

Message is delivered
to application

Implementing Lamport’s logical clocks

• Each process Pi maintains local clock Ci

• Before executing an event, Ci is incremented by 1

• When sending a message M, it is timestamped with Ci

• When receiving a message M with timestamp T :

• Cj for process Pj is adjusted to max(Cj ,T)

• Cj is incremented by 1

• Message is delivered to application

Solving the Replica Problem: Total-ordered multicast

• Each client multicasts a message to all replicas

• Each message is timestamped according to local logical clock

• Assume no loss of messages

• Assume reliable ordering

• Each replica places received messages in a queue

• Each replica processes messages in order of timestamps

• Thus, ensuring total order

• QED?

Total-ordered multicast

• Each client multicasts a message to all replicas

• Each message is timestamped according to local logical clock

• Assume no loss of messages

• Assume reliable ordering

• Each replica places received messages in a queue

• Each replica acknowledges receipt of messages using a

multicast

• Each replica processes messages in order of their timestamps

• Only when it has received acknowledgement for that message

from all other replicas

This protocol ensures all processes see the same queue.

Mutual Exclusion with Logical Clocks

• Total ordered multicast produces a total order among all

messages

• Can be used to implement mutual exclusion

• Messages:

• ENTER: process multicasts that it wants to enter a critical

section

• ALLOW: process unicasts permission to ENTERing process

• RELEASE: process multicasts that it has left a critical section

Mutual Exclusion Condition

• On receiving

• ENTER: placed into local queue sorted by timestamp, ALLOW

sent to requesting process

• ALLOW: placed into local queue sorted by timestamp

• RELEASE: item at head of queue deleted

• A process enters the critical section if:

• its ENTER is at head of queue and

• there are messages (ENTER/ALLOW) from all other processes

in queue

• When a process releases a critical section, it deletes all

ALLOWs from its queue before multicasting RELEASE

Acknowledgements

Figures from van Steen and Tanenbaum, 3rd Edition.

	The Replica Problem
	Logical Clocks

