
CSC2/458 Parallel and Distributed Systems

Checkpointing and Recovery

Sreepathi Pai

April 17, 2018

URCS



Outline

Checkpointing and Recovery

Independent Checkpointing

Coordinated Checkpointing

Message Logging



Outline

Checkpointing and Recovery

Independent Checkpointing

Coordinated Checkpointing

Message Logging



Errors happen

• Errors happen

• How do we recover from them (say, for message loss)?

• (before information theory): ?

• (after information theory): ?



Checkpointing and Recovery

To checkpoint is to save the state of a computation so that you

can “rollback” to it

• Examples:

• Save games

• Virtual machine snapshots

Recovery is then “simply” restoring the checkpoint



Distributed Checkpointing: The Challenge

• Processes only know:

• which messages they have received

• which messages they have sent

• what their local state is

• Checkpointing ideally should not require everybody to
“pause”

• Must run concurrently with computation



The Recovery Line

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection

of checkpoints

Message sent
from P2 to P1



Outline

Checkpointing and Recovery

Independent Checkpointing

Coordinated Checkpointing

Message Logging



Algorithm

• A process records its local state independently

• messages sent/received included

• A recovery for a process entails going back to its most recent
checkpoint

• Unfortunately, this can’t be done independently



Rollbacks

mm*

P1

P2

Initial state

Failure

Checkpoint

Time

Assume P2 fails. How far we do need to rollback to achieve a

consistent worldview?



Detecting dependencies

• For a process Pi , let INTi (m) be the interval between the

m − 1 and m checkpoints.

• All messages sent in INTi (m) contain (i ,m)

• When process Pj receives this message, it may be in INTj(n)

• records dependency INTi (m)→ INTj(n)

• saves dependency with checkpoint



Rolling back: Consistency

• If Pi rolls back to checkpoint m − 1, no messages from

INTi (m) were ever sent

• All checkpoints dependent on INTi (m) are invalid

• Rollbacks need to continue until consistency is reached



Outline

Checkpointing and Recovery

Independent Checkpointing

Coordinated Checkpointing

Message Logging



Algorithm

• Coordinator broadcasts CHECKPOINT-REQUEST message to

all processes

• When this request is received,

• Process checkpoints local state

• Acknowledges to coordinator that it has taken checkpoint and

waits

• When coordinator receives acknowledgements from all
processes, it sends CHECKPOINT-DONE

• Processes resume computation

• What about messages?



Message handling

• All incoming messages received after

CHECKPOINT-REQUEST are not considered part of the

checkpoint

• All outgoing messages are held back until

CHECKPOINT-DONE is received

• This results in a “globally consistent state”

• How?



Outline

Checkpointing and Recovery

Independent Checkpointing

Coordinated Checkpointing

Message Logging



Basic idea

• Computations are deterministic and rely only on messages

transmitted

• Save messages from a checkpoint and replay them during

recovery



Piecewise deterministic execution

• A piecewise deterministic computation interval:

• starts with a non-deterministic event (e.g. receipt of a

message)

• continues in a completely deterministic fashion

• ends just before another non-deterministic event

This implies that only non-deterministic events need to be logged.



Who should save the messages?

P

Q

R

Q crashes and recovers

Unlogged message

Logged message

m1

m2 m2 m3m3

m1 m2 is never replayed,
so neither will m3

Time



Orphan processes

• Let DEP(m) represent processes that depend on message m

• Let COPY (m) represent processes that contain a copy of m

• but may not have logged it

• Note, m contains all details necessary to retransmit it

A process Q is orphaned if and only if:

• Q depends on m (i.e. Q ∈ DEP(m))

• All processes in COPY (m) have failed

• So m cannot be played back



Pessimistically avoiding orphan processes

• Orphan processes can be avoided by ensuring that

• A non-deterministic message is sent only to one process

• That process cannot send another message without logging m



Further reading

Chandy and Lamport, “Distributed Snapshots: Determining Global

States of Distributed Systems”, ACM TOCS 1985

https://dl.acm.org/citation.cfm?id=214456
https://dl.acm.org/citation.cfm?id=214456


Acknowledgments

All figures from Van Steen and Tanenbaum, Distributed Systems,

3rd Edition, Chapter 8.


	Checkpointing and Recovery
	Independent Checkpointing
	Coordinated Checkpointing
	Message Logging

