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Errors happen

• Errors happen

• How do we recover from them (say, for message loss)?

• (before information theory): ?

• (after information theory): ?



Checkpointing and Recovery

To checkpoint is to save the state of a computation so that you

can “rollback” to it

• Examples:

• Save games

• Virtual machine snapshots

Recovery is then “simply” restoring the checkpoint



Distributed Checkpointing: The Challenge

• Processes only know:

• which messages they have received

• which messages they have sent

• what their local state is

• Checkpointing ideally should not require everybody to
“pause”

• Must run concurrently with computation



The Recovery Line
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Algorithm

• A process records its local state independently

• messages sent/received included

• A recovery for a process entails going back to its most recent
checkpoint

• Unfortunately, this can’t be done independently



Rollbacks
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Assume P2 fails. How far we do need to rollback to achieve a

consistent worldview?



Detecting dependencies

• For a process Pi , let INTi (m) be the interval between the

m − 1 and m checkpoints.

• All messages sent in INTi (m) contain (i ,m)

• When process Pj receives this message, it may be in INTj(n)

• records dependency INTi (m)→ INTj(n)

• saves dependency with checkpoint



Rolling back: Consistency

• If Pi rolls back to checkpoint m − 1, no messages from

INTi (m) were ever sent

• All checkpoints dependent on INTi (m) are invalid

• Rollbacks need to continue until consistency is reached
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Algorithm

• Coordinator broadcasts CHECKPOINT-REQUEST message to

all processes

• When this request is received,

• Process checkpoints local state

• Acknowledges to coordinator that it has taken checkpoint and

waits

• When coordinator receives acknowledgements from all
processes, it sends CHECKPOINT-DONE

• Processes resume computation

• What about messages?



Message handling

• All incoming messages received after

CHECKPOINT-REQUEST are not considered part of the

checkpoint

• All outgoing messages are held back until

CHECKPOINT-DONE is received

• This results in a “globally consistent state”

• How?
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Basic idea

• Computations are deterministic and rely only on messages

transmitted

• Save messages from a checkpoint and replay them during

recovery



Piecewise deterministic execution

• A piecewise deterministic computation interval:

• starts with a non-deterministic event (e.g. receipt of a

message)

• continues in a completely deterministic fashion

• ends just before another non-deterministic event

This implies that only non-deterministic events need to be logged.



Who should save the messages?
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Orphan processes

• Let DEP(m) represent processes that depend on message m

• Let COPY (m) represent processes that contain a copy of m

• but may not have logged it

• Note, m contains all details necessary to retransmit it

A process Q is orphaned if and only if:

• Q depends on m (i.e. Q ∈ DEP(m))

• All processes in COPY (m) have failed

• So m cannot be played back



Pessimistically avoiding orphan processes

• Orphan processes can be avoided by ensuring that

• A non-deterministic message is sent only to one process

• That process cannot send another message without logging m



Further reading

Chandy and Lamport, “Distributed Snapshots: Determining Global

States of Distributed Systems”, ACM TOCS 1985

https://dl.acm.org/citation.cfm?id=214456
https://dl.acm.org/citation.cfm?id=214456
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