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Memory Management in Programs

� Static (compile-time) management

� Done by the compiler for fixed-size data structures

� Dynamic memory management

� malloc, free, in languages like C

� In garbage-collected languages, these are done under the hood

by the runtime

� malloc returns a pointer to an area of memory on success

� Usually from the “heap”

� free returns the allocation to the heap



Multi-device Memory Management

� Implicit in malloc is that it allocates memory on the CPU

� However, other devices, in particular GPUs have their own
memory allocators

� e.g., CUDA has cudaMalloc and cudaFree

� can call cudaMalloc on both the CPU and GPU (but don’t!)

� These allocators must be used even in GC languages

� GPUs have multiple memory “regions” (constant memory,
local memory, shared memory)

� (note: CUDA nomenclature)

� Not all of them have allocators (compiler+runtime allocated)

� a memory mapping problem

� Some accelerators have no dynamic memory allocation ability

� E.g., Google’s TPU, Pixel 6 TPU



Address Spaces

� On 64-bit machines, all addresses lie in a single address space

� The pointer from malloc isn’t any different from cudaMalloc

� However, dereferencing a pointer on the wrong device can
cause problems

� segmentation fault

� Even CUDA’s different memory regions use a unified pointer

space

� May not be the case with accelerators

� but C++ rules require unified address space



Characteristics of a Memory Allocation

� Size in bytes

� Scope

� Local, Global

� Lifetime (or Lifespan, or Live Range)

� from allocation to free

� or from first user to last

� Type of accesses to data

� Read/Write

� Mostly read

� Source of data

� from computation

� from file



How Modern Dynamic Memory Allocators Work

� Allocate a global pool of memory from the system

� Divide the global pool in to per-thread pools

� Leave some memory in the global pool

� Divide the per-thread pool into “buckets”

� Each bucket satisfies one size of request (usually rounded up

to power of 2)

� Limited number of sizes supported

� Satisfy allocation requests from per-thread pools

� Borrow from the global pool if running out

� Or, for very large sizes, directly obtain memory from operating

system

� Examples: hoard, jemalloc, tcmalloc



Large Allocations

� If the heap is full, the heap size can be increased using

� sbrk (traditional)

� mmap with anonymous pages

� Both ask the operating system for more memory

� Involve a relatively slow system call

� Used by memory allocators for very large size allocations



Trying Out New Memory Allocators

� On Linux, the standard memory allocator is the one in libc

� The C runtime library

� However, it is possible to override malloc and free at
runtime

� Use LD PRELOAD environment variable on Linux

� LD PRELOAD=mymalloc.so ./program

� This only works if the C library is dynamically linked

� Look for build options that allow changing the allocator



Garbage Collected Languages

� Garbage-collected languages also perform memory
management

� under the hood

� Garbage collectors can be tuned

� out of scope for this class

� Remember, Python is a garbage-collected language



When is a Memory Allocation a Performance Issue?

� Never

� Only under memory pressure

� when the amount of free memory in the pool is low

� or in the system or device

� At high rates of allocation/deallocation

� book-keeping might consume all time

� queueing might take up all time (e.g. cudaMalloc on the

GPU)

� At high rates of system call invocation

� Due to poor synchronizing implementations

� notoriously, on the GPU



Memory Allocator Debugging

� Production memory allocators can dump statistics about
memory allocation

� glibc: Allocator Debugging

� Mostly useful for leaks and other statistics

� Valgrind also has tools for debugging memory

� Neither handles GPU memory very well

https://sourceware.org/glibc/manual/latest/html_node/Allocation-Debugging.html


Memory Profiling

� Understanding GPU Memory 1: Visualizing All Allocations

over Time

https://pytorch.org/blog/understanding-gpu-memory-1/
https://pytorch.org/blog/understanding-gpu-memory-1/
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Memory Usage

� Inputs, Outputs

� Weights (also an input, but usually read only and associated
with an operator)

� Plus biases

� Activations (also an output, but usually write only and

associated with an operator)

� Temporaries (usually operator-specific)



Typical Sizes

� Usually referred to as parameters

� Weights + Biases only

� AlexNet: 60M parameters (possibly fp32)

� GPT-3: 175B parameters (fp16)

� Deepseek-V3: 671B MoE parameters / 37B “activated

parameters”



How do Memory Allocations Scale?

� Memory for inputs and outputs scale linearly with number of
inputs and outputs

� e.g., parallelism

� Weights occupy constant space (being read only)

� but may need to be replicated across address spaces

� Activations scale linearly with parallel instances of an operator

� Temporaries also scale linearly with parallel instances of an

operator

� Number of operators: size of neural network



Memory Allocation Strategy

� On demand: per-operator

� just before operator begins execution

� Offline: per-graph

� before execution of the graph

� may be only option for accelerators

� challenging for dynamic input sizes and changing parallelization



Orchestrating Memory Transfers Across Devices

� When an operator runs on a GPU, it must have space for its
inputs and outputs

� And all of its temporaries

� Then, its inputs must be transferred to it, and outputs

transferred back

� In multi-device parallelism (e.g., data parallel), data shared
across devices must be synchronized

� data must be transferred across devices

� later: Communication



Orchestrating Memory Transfers Across Machines

� When using a cluster of machines, data must be transferred

across machines

� later: Communication



Micro-scale Memory Management: Placement (or Mapping)

� GPUs contain multiple memory spaces

� constant memory: for read-only, broadcast data (e.g.,

convolution filters)

� shared memory: on-chip data

� GPU compilers+runtimes will give a program a block of
memory in these spaces

� Must be populated by the CPU program (constant memory)

� or by the GPU program/kernel (shared memory)

� Deciding which data resides where and when is a hard problem
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Data Layout

� Certain implementations of operators expect data in a
particular format

� e.g., tensor cores like NHWC vs NCHW

� Frameworks will translate behind the scenes!

� Extra memory and extra work



Reducing Data Size: Quantization

� Change parameters from FP32 to FP16

� halves memory usage

� Change parameters from FP32 to INT8

� 1/4th the memory usage!

� Weight quantization (static)

� Activation quantization (dynamic)

� Many schemes for quantization exist



Reducing Data Size: Sparsification

� Weight and bias tensors

mostly contain zeroes

� Different sparsification

techniques exist

� Use sparse tensor formats

(COO, etc.)

� Semi-structured Sparsity

� Zeroes follow a

predictable pattern
Image source: https://developer.nvidia.com/blog/

exploiting-ampere-structured-sparsity-with-cusparselt

https://developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt
https://developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt


Reducing Data Size: Compression

� Lossless compression

� Entropy-based schemes

� Lossy compression

� e.g. quantization

� See, for example, QMoE: Sub-1-Bit Compression of

Trillion-Parameter Models

https://proceedings.mlsys.org/paper_files/paper/2024/file/c74b624843218d9b6713fcf299d6d5e4-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/c74b624843218d9b6713fcf299d6d5e4-Paper-Conference.pdf


Loading Weights Fast

� Loading weights from file is slow for large models

� max tens of GB/s

� Example: PyTorch uses Pickle files for weights

� also adds parsing overhead

� Best case would be equivalent to mmap-ing weights directly

into memory



mmap-ing data

� On virtual memory systems, storage is part of memory address

space

� Use the mmap system call to map a file into memory

// no error handling code!
FILE *f = fopen("/path/to/weights.file", "r")
fseek(f, 0, SEEK_END);
size_t sz = ftell(f)

unsigned char *contents = mmap(NULL, sz, PROT_READ,
MAP_SHARED, fileno(f), 0);

fclose(f);

// read contents as if it is an array

� What issues do you see with this scheme?
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Optional Recommended Reading

� MiMalloc: A Lightweight Memory Allocator for
Hardware-Accelerated Machine Learning

� Source: https:

//github.com/google/minimalloc?tab=readme-ov-file

� TelaMalloc: Efficient On-Chip Memory Allocation for

Production Machine Learning Accelerators

� jemalloc Post-Mortem

� a look at the life of a memory allocator

https://dl.acm.org/doi/pdf/10.1145/3623278.3624752
https://dl.acm.org/doi/pdf/10.1145/3623278.3624752
https://github.com/google/minimalloc?tab=readme-ov-file
https://github.com/google/minimalloc?tab=readme-ov-file
https://dl.acm.org/doi/pdf/10.1145/3567955.3567961
https://dl.acm.org/doi/pdf/10.1145/3567955.3567961
https://jasone.github.io/2025/06/12/jemalloc-postmortem/
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