
CSC266 Introduction to Parallel Computing

using GPUs

Parallelizing Programs

Sreepathi Pai

September 20, 2017

URCS

Outline

Dependences

Important Archetypes

Parallelism in Action

Short Vector Machines

Outline

Dependences

Important Archetypes

Parallelism in Action

Short Vector Machines

Serial vs Parallel Algorithms

What makes some algorithms serial and others parallel?

Data Dependences

Operation waits for data to become available:

a = b + c

which gets compiled down to:

load r1, b
load r2, c
add r3, r1, r2

Although add can start before the two loads, it has to wait for the

loads to finish.

Control Dependences

• Operation may or may not execute depending on condition

if(temperature == cold)
wear_jacket()

• Control dependences can always be converted to data

dependences

Dynamic vs Static Dependences

When can the two writes in the code below execute in parallel?

void set_p(int *x, int *y) {
*x = 1;
*y = 2;

}

When can they not?

Dependence Graphs

• A graphical representation of dependences between operations

• Data-flow graphs

• Control-flow graphs

• We will focus on data-flow graphs

• Nodes: operations in dynamic trace

• Edges: communication, “flow of data”

• Dynamic trace

• All operations executed by a program other than control flow

Dynamic Trace

Assume a, b and c are not aliases (i.e. they are separate arrays)

and N = 3.

for(i = 0; i < N; i++)
a[i] = b[i] + c[i]

The dynamic trace is:

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]
a[2] = b[2] + c[2]

Drawing a Dependence Graph

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]
a[2] = b[2] + c[2]

b[0]

+

a[0]

c[0] b[1]

+

a[1]

c[1] b[2]

+

a[2]

c[2]

Outline

Dependences

Important Archetypes

Parallelism in Action

Short Vector Machines

Vector Addition

Assume a, b and c all arrays of length N.

void vadd(a, b, c, N) {
for(i = 0; i < N; i++)

a[i] = b[i] + c[i]
}

Does iteration 1 of this loop depend on iteration 0 of this loop?

Dependence Graph for Vector Addition

b[0]

+

a[0]

c[0] b[1]

+

a[1]

c[1] b[2]

+

a[2]

c[2]

Distributing Work for Vector Addition

b[0]

+

a[0]

c[0] b[1]

+

a[1]

c[1] b[2]

+

a[2]

c[2]

CPU0 CPU1 CPU0

Sometimes called “embarrassingly parallel” – no communication

between parallel computations

Vector Sum

Assume a is array of length N = 3.

void vsum(a) {
S = 0
for(i = 0; i < N; i++)

S = S + a[i]
}

What does the dependence graph for this loop look like?

Dependence Graph for Vector Sum

S = 0
S = S + A[0]
S = S + A[1]
S = S + A[2]

S

+

S

+

S

+

S

a[0]

a[1]

a[2]

0

Breaking Dependences for Vector Sum: Reduction Tree

• Create an array of S

• One element for each

thread

• Get sum of each thread as
an array

• S[0..thread]

• Repeat on this array until

only one element left

• Requires synchronization

S0

+

S1

a[0]

+

a[1]a[2]

+

S

0

Distributing Work for Vector Sum

S0

+

S1

a[0]

+

a[1]a[2]

+

S

0

CPU1 CPU0

CPU0

Barrier

Nested Parallelism: Matrix Multiplication

• Multiply matrices A and B to get C

• A is M × N

• B is N × K

• C is M × K

for(row = 0; row < M; row++)
for(col = 0; col < K; col++)

vmul(A[row][:], B[:][col], Tmp, N)
C[row][col] = vsum(Tmp, N)

Irregular Parallelism: Breadth First Search

Which of the loops below can be safely parallelized?

void bfs(graph, LEVEL) {
for(n = 0; n < graph.nodes; n++)

for(e = n.firstedge(); e < n.lastedge(); e++)
if(e.dst.distance == INF && n.distance == LEVEL - 1)

e.dst.distance = LEVEL;
}

set all distances to INF
src.distance = 0
LEVEL = 1
do {

bfs(graph, LEVEL)
LEVEL++

} while(some edge’s distance changed)

BFS on two graphs

Does parallelism depend on input?

A

B C D

E

U

W

X

Y

Outline

Dependences

Important Archetypes

Parallelism in Action

Short Vector Machines

Flynn’s Taxonomy

How computers are implemented:

• Single Instruction Single Data (SISD)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Single Data (MISD)

• Multiple Instruction Multiple Data (MIMD)

Programmer’s Viewpoint

• Task Parallelism

• Data Parallelism

Task Parallelism

• Different code (usually all running at same time)

• Different data

• Example (real life)

• Assembly line

• Example (CS)

• Unix pipe invocation: sort | uniq | wc -l

Data Parallelism

• Same code

• Runs on different data

• Two important levels

• Instruction-level (SIMD)

• Program-level (SPMD)

GPUs prefer data parallelism.

SIMD Implementations: Vector Machines

The Cray-1 (circa 1977):

• Vx – vector registers

• 64 elements

• 64-bits per element

• Vector length register (Vlen)

• Vector mask register

Richard Russell, “The Cray-1 Computer System”, Comm.

ACM 21,1 (Jan 1978), 63-72

Vector Instructions – Vertical

1 2 3 4

5 6 2 3

6 8 5 7

+

=

For 0 < i < Vlen:

dst[i] = src1[i] + src2[i]

• Most arithmetic instructions

Vector Instructions – Horizontal

1 2 3 41 = min()

For 0 < i < Vlen:

dst = min(src1[i], dst)

Note that dst is a scalar.

• Mostly reductions (min, max, sum, etc.)

• Not well supported

• Cray-1 did not have this

Vector Instructions – Shuffle/Permute

1 2 3 4

0 3 1 1

1 4 2 2

src

mask

dst

dst = shuffle(src1, mask)

• Poor support on older implementations

• Reasonably well-supported on recent implementations

Masking/Predication

6 5 7 2

1 0 1 0

1 4 2 2

6 5 7 2

*

6 ? 14 ?

=

src1

g5mask

src1

src2

dst

g5mask = gt(src1, 5)
dst = mul(src1, src2, g5mask)

Outline

Dependences

Important Archetypes

Parallelism in Action

Short Vector Machines

SIMD Registers in modern CPUs

• Bits, not elements

• 64 bits (MMX, 3DNow!)

• 128 bits (SSE family, AltiVec)

• 256 bits (AVX-256)

• 512 bits (AVX 2.0 or AVX-512)

• Example 128-bit vector can contain

• 16 8-bit elements

• 8 16-bit elements

• 4 32-bit elements

• 2 64-bit elements

• 1 128-bit element

• No vector length register

• except AVX512 which has vector length (but can only choose

128, 256, 512)

• No vector masks

• except AVX512 which has masks

Four ways to write SIMD programs on current CPUs

In order of decreasing difficulty:

• Assembly code

• not covering this

• SIMD intrinsics

• Vector types

• Autovectorizing compilers

• not covering this

• great when it works!

Vector intrinsics (using x86 as an example)

• Expose short vector instructions to programmer

• Not assembly programming, compiler still does:

• register allocation

• scheduling

• New data types (like vector types):

• m64 (MMX)

• m128 (SSE)

• m128i and m128d (SSE2)

• Intrinsics look like functions:

• m128 mm add ss (m128 A, m128 B)

• Allows direct use of machine instructions

Vector types in GCC

typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

c = a + b;

• Operations on vector types generate vector instructions

• Most low-level details (e.g. alignment), taken care of by gcc

• Operations supported:

• +, -, *, /, unary minus, ^, |, &, ~, %

• this does not include machine-specific instructions

Conclusion

• Dependence analysis is necessary to identify parallelism

• Important types of parallelism “patterns”:

• embarrassingly parallel (vector addition)

• tree-based reductions

• nested parallelism

• irregular parallelism

• For GPUs: focus on SIMD parallelism

• Abundant in scientific applications, multimedia applications,

etc.

• Usually found in loops

	Dependences
	Important Archetypes
	Parallelism in Action
	Short Vector Machines

