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Serial vs Parallel Algorithms

What makes some algorithms serial and others parallel?



Data Dependences

Operation waits for data to become available:

a = b + c

which gets compiled down to:

load r1, b
load r2, c
add r3, r1, r2

Although add can start before the two loads, it has to wait for the

loads to finish.



Control Dependences

• Operation may or may not execute depending on condition

if(temperature == cold)
wear_jacket()

• Control dependences can always be converted to data

dependences



Dynamic vs Static Dependences

When can the two writes in the code below execute in parallel?

void set_p(int *x, int *y) {
*x = 1;
*y = 2;

}

When can they not?



Dependence Graphs

• A graphical representation of dependences between operations

• Data-flow graphs

• Control-flow graphs

• We will focus on data-flow graphs

• Nodes: operations in dynamic trace

• Edges: communication, “flow of data”

• Dynamic trace

• All operations executed by a program other than control flow



Dynamic Trace

Assume a, b and c are not aliases (i.e. they are separate arrays)

and N = 3.

for(i = 0; i < N; i++)
a[i] = b[i] + c[i]

The dynamic trace is:

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]
a[2] = b[2] + c[2]



Drawing a Dependence Graph

a[0] = b[0] + c[0]
a[1] = b[1] + c[1]
a[2] = b[2] + c[2]
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Vector Addition

Assume a, b and c all arrays of length N.

void vadd(a, b, c, N) {
for(i = 0; i < N; i++)

a[i] = b[i] + c[i]
}

Does iteration 1 of this loop depend on iteration 0 of this loop?



Dependence Graph for Vector Addition
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Distributing Work for Vector Addition

b[0]

+

a[0]

c[0] b[1]

+

a[1]

c[1] b[2]

+

a[2]

c[2]

CPU0 CPU1 CPU0

Sometimes called “embarrassingly parallel” – no communication

between parallel computations



Vector Sum

Assume a is array of length N = 3.

void vsum(a) {
S = 0
for(i = 0; i < N; i++)

S = S + a[i]
}

What does the dependence graph for this loop look like?



Dependence Graph for Vector Sum

S = 0
S = S + A[0]
S = S + A[1]
S = S + A[2]
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Breaking Dependences for Vector Sum: Reduction Tree

• Create an array of S

• One element for each

thread

• Get sum of each thread as
an array

• S[0..thread]

• Repeat on this array until

only one element left

• Requires synchronization

S0

+

S1

a[0]

+

a[1]a[2]

+

S

0



Distributing Work for Vector Sum
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Nested Parallelism: Matrix Multiplication

• Multiply matrices A and B to get C

• A is M × N

• B is N × K

• C is M × K

for(row = 0; row < M; row++)
for(col = 0; col < K; col++)

vmul(A[row][:], B[:][col], Tmp, N)
C[row][col] = vsum(Tmp, N)



Irregular Parallelism: Breadth First Search

Which of the loops below can be safely parallelized?

void bfs(graph, LEVEL) {
for(n = 0; n < graph.nodes; n++)

for(e = n.firstedge(); e < n.lastedge(); e++)
if(e.dst.distance == INF && n.distance == LEVEL - 1)

e.dst.distance = LEVEL;
}

set all distances to INF
src.distance = 0
LEVEL = 1
do {

bfs(graph, LEVEL)
LEVEL++

} while(some edge’s distance changed)



BFS on two graphs

Does parallelism depend on input?
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Flynn’s Taxonomy

How computers are implemented:

• Single Instruction Single Data (SISD)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Single Data (MISD)

• Multiple Instruction Multiple Data (MIMD)



Programmer’s Viewpoint

• Task Parallelism

• Data Parallelism



Task Parallelism

• Different code (usually all running at same time)

• Different data

• Example (real life)

• Assembly line

• Example (CS)

• Unix pipe invocation: sort | uniq | wc -l



Data Parallelism

• Same code

• Runs on different data

• Two important levels

• Instruction-level (SIMD)

• Program-level (SPMD)

GPUs prefer data parallelism.



SIMD Implementations: Vector Machines

The Cray-1 (circa 1977):

• Vx – vector registers

• 64 elements

• 64-bits per element

• Vector length register (Vlen)

• Vector mask register

Richard Russell, “The Cray-1 Computer System”, Comm.

ACM 21,1 (Jan 1978), 63-72



Vector Instructions – Vertical

1 2 3 4

5 6 2 3

6 8 5 7

+

=

For 0 < i < Vlen:

dst[i] = src1[i] + src2[i]

• Most arithmetic instructions



Vector Instructions – Horizontal

1 2 3 41 = min( )

For 0 < i < Vlen:

dst = min(src1[i], dst)

Note that dst is a scalar.

• Mostly reductions (min, max, sum, etc.)

• Not well supported

• Cray-1 did not have this



Vector Instructions – Shuffle/Permute

1 2 3 4

0 3 1 1

1 4 2 2

src

mask

dst

dst = shuffle(src1, mask)

• Poor support on older implementations

• Reasonably well-supported on recent implementations



Masking/Predication

6 5 7 2

1 0 1 0

1 4 2 2

6 5 7 2

*

6 ? 14 ?

=

src1

g5mask

src1

src2

dst

g5mask = gt(src1, 5)
dst = mul(src1, src2, g5mask)
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SIMD Registers in modern CPUs

• Bits, not elements

• 64 bits (MMX, 3DNow!)

• 128 bits (SSE family, AltiVec)

• 256 bits (AVX-256)

• 512 bits (AVX 2.0 or AVX-512)

• Example 128-bit vector can contain

• 16 8-bit elements

• 8 16-bit elements

• 4 32-bit elements

• 2 64-bit elements

• 1 128-bit element

• No vector length register

• except AVX512 which has vector length (but can only choose

128, 256, 512)

• No vector masks

• except AVX512 which has masks



Four ways to write SIMD programs on current CPUs

In order of decreasing difficulty:

• Assembly code

• not covering this

• SIMD intrinsics

• Vector types

• Autovectorizing compilers

• not covering this

• great when it works!



Vector intrinsics (using x86 as an example)

• Expose short vector instructions to programmer

• Not assembly programming, compiler still does:

• register allocation

• scheduling

• New data types (like vector types):

• m64 (MMX)

• m128 (SSE)

• m128i and m128d (SSE2)

• Intrinsics look like functions:

• m128 mm add ss ( m128 A, m128 B)

• Allows direct use of machine instructions



Vector types in GCC

typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

c = a + b;

• Operations on vector types generate vector instructions

• Most low-level details (e.g. alignment), taken care of by gcc

• Operations supported:

• +, -, *, /, unary minus, ^, |, &, ~, %

• this does not include machine-specific instructions



Conclusion

• Dependence analysis is necessary to identify parallelism

• Important types of parallelism “patterns”:

• embarrassingly parallel (vector addition)

• tree-based reductions

• nested parallelism

• irregular parallelism

• For GPUs: focus on SIMD parallelism

• Abundant in scientific applications, multimedia applications,

etc.

• Usually found in loops
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