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CUDA programmer’s view of the system
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Data access in Shared memory vs Distributed systems

• Shared Memory system

• Same address space

• Data in the system accessed through load/store instructions

• E.g., multicore

• Distributed Memory System (e.g. MPI)

• (Usually) different address space

• Data in the system accessed through message-passing

• E.g., clusters



Is a GPU-containing system a distributed system?

• Does data live in the same address space?

• Is data in the entire system accessed through load/store

instructions?
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Pointers

• Addresses are contained in pointers

• GPU addresses are C/C++ pointers in CPU code

• True, in CUDA

• False, in OpenCL (cl::Buffer in CPU)



Allocating Host Memory

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Allocated by malloc (or equivalent)

• Freed by free (or equivalent)

• Pointers cannot be deferenced by GPU



Allocating GPU Memory

• Data lives in GPU memory

• Read/Written by GPU using load/store instructions

• Allocated by cudaMalloc (or cudaMallocManaged)

• Freed by cudaFree

• Pointers cannot be deferenced by CPU

• Data transferred using copies (cudaMemcpy)



Allocating Pinned Memory

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions over PCIe

bus

• Same pointer value

• Allocated by cudaMallocHost (or cudaHostMalloc)

• Freed by cudaFree

• No transfers needed!



Mapping Host-allocated Memory to GPUs

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions over PCIe

bus

• Allocated by malloc

• Mapped by cudaHostRegister

• GPU uses different pointer (cudaHostGetDevicePointer)

• Freed by free

• No transfers needed!



Managed Memory

• Data lives in CPU memory or GPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions

• But not by both at the same time!

• Same pointer value

• Freed by cudaFree

• No manual transfers needed!

• Data transferred “automagically” behind scenes



Summary

Pointer from Host GPU Same Pointer

CPU malloc Y N N

cudaMalloc N Y N

cudaHostMalloc Y Y Y

cudaHostRegister/GetDevicePointer Y Y N

cudaMallocManaged Y Y Y
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Host code and device code

• CPU code callable from CPU ( host )

• GPU code callable from CPU ( global )

• GPU code callable from GPU ( device )

• Code callable from both CPU and GPU ( host ,

device )

• CPU code callable from GPU (N/A)



CUDA source code layout

__global__
void vector_add(int *a, int *b, int *c, int N) {

...
}

int main(void) {
...
vector_add<<<...>>>(a, b, c, N);

}



CUDA Compilation Model (Simple)

• All code lives in CUDA source files (.cu)

• nvcc compiler separates GPU and CPU code

• Inserts calls to appropriate CUDA runtime routines

• GPU code is compiled to PTX or binary

• PTX code will be compiled to binary at runtime

• CPU code is compiled by GCC (or clang)



Fat binary

• End result of nvcc run is a single executable

• On Linux, standard ELF executable

• Contains code for both CPU and GPU

• CUDA automatically sets up everything

• OpenCL does not

• No OpenCL equivalent of nvcc
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Vector Addition again

__global__
void vector_add(int *a, int *b, int *c, int N) {

...
}

int main(void) {
...
vector_add<<<...>>>(a, b, c, N);

}



Execution starts on the CPU

• Program starts in main, as usual

• On first call to CUDA library, a GPU context is created

• GPU Context == CPU Process

• Can also create one automatically

• Default GPU is chosen automatically per thread

• If multiple GPUs

• Usually the newest, ties broken by the fastest

• This is where default allocations and launches occur

• Can be changed per thread (cudaSetDevice)



Memory Allocation and Copies

• cudaMalloc, etc. used to allocate memory

• CPU waits for allocation

• cudaMemcpy, etc. used to copy memory across

• CPU waits by default for copy to finish

• LATER LECTURES: non-blocking copying APIs



Launch

• Determine a thread block size: say, 256 threads

• Divide work by thread block size

• Round up

• dN/256e

• Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)



Kernel Launch Configuration

• GPU kernels are SPMD kernels

• Single-program, multiple data

• All threads execute the same code

• Number of threads to execute is specified at launch time

• As a grid of B thread blocks of T threads each

• Total threads: B × T

• Reason: Only threads within the same thread block can
communicate with each other (cheaply)

• Other reasons too, but this is the only algorithm-specific reason



Distributing work in the kernel

__global__
vector_add(int *a, int *b, int *c, int N) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = a[tid] + b[tid];

}
}

• Maximum 232 threads supported

• gridDim, blockDim, blockIdx and threadIdx are

CUDA-provided variables



Blocking and Non-blocking APIs

• Blocking API (or operation)

• CPU waits for operation to finish

• e.g. simple cudaMemcpy

• Non-blocking API (or operation)

• CPU does not wait for operation to finish

• e.g. kernel launches

• You can wait explicitly using special CUDA APIs



Helpful Tips

• Each CUDA API call returns a status code

• Check this always

• If an error occurred, this will contain error code

• Error may be related to this API call or previous non-blocking

API calls!

• Use cuda-memcheck tool to detect errors

• Slows down program, but can tell you of many errors
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