
CSC266 Introduction to Parallel Computing

using GPUs

Introduction to CUDA

Sreepathi Pai

October 18, 2017

URCS

Outline

Background

Memory

Code

Execution Model

Outline

Background

Memory

Code

Execution Model

CUDA programmer’s view of the system

CPUPCIe

CPU RAMGPU RAM

SM0 SM1 SMn

GPU

Data access in Shared memory vs Distributed systems

• Shared Memory system

• Same address space

• Data in the system accessed through load/store instructions

• E.g., multicore

• Distributed Memory System (e.g. MPI)

• (Usually) different address space

• Data in the system accessed through message-passing

• E.g., clusters

Is a GPU-containing system a distributed system?

• Does data live in the same address space?

• Is data in the entire system accessed through load/store

instructions?

Outline

Background

Memory

Code

Execution Model

Pointers

• Addresses are contained in pointers

• GPU addresses are C/C++ pointers in CPU code

• True, in CUDA

• False, in OpenCL (cl::Buffer in CPU)

Allocating Host Memory

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Allocated by malloc (or equivalent)

• Freed by free (or equivalent)

• Pointers cannot be deferenced by GPU

Allocating GPU Memory

• Data lives in GPU memory

• Read/Written by GPU using load/store instructions

• Allocated by cudaMalloc (or cudaMallocManaged)

• Freed by cudaFree

• Pointers cannot be deferenced by CPU

• Data transferred using copies (cudaMemcpy)

Allocating Pinned Memory

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions over PCIe

bus

• Same pointer value

• Allocated by cudaMallocHost (or cudaHostMalloc)

• Freed by cudaFree

• No transfers needed!

Mapping Host-allocated Memory to GPUs

• Data lives in CPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions over PCIe

bus

• Allocated by malloc

• Mapped by cudaHostRegister

• GPU uses different pointer (cudaHostGetDevicePointer)

• Freed by free

• No transfers needed!

Managed Memory

• Data lives in CPU memory or GPU memory

• Read/Written by CPU using load/store instructions

• Read/Written by GPU using load/store instructions

• But not by both at the same time!

• Same pointer value

• Freed by cudaFree

• No manual transfers needed!

• Data transferred “automagically” behind scenes

Summary

Pointer from Host GPU Same Pointer

CPU malloc Y N N

cudaMalloc N Y N

cudaHostMalloc Y Y Y

cudaHostRegister/GetDevicePointer Y Y N

cudaMallocManaged Y Y Y

Outline

Background

Memory

Code

Execution Model

Host code and device code

• CPU code callable from CPU (host)

• GPU code callable from CPU (global)

• GPU code callable from GPU (device)

• Code callable from both CPU and GPU (host ,

device)

• CPU code callable from GPU (N/A)

CUDA source code layout

__global__
void vector_add(int *a, int *b, int *c, int N) {

...
}

int main(void) {
...
vector_add<<<...>>>(a, b, c, N);

}

CUDA Compilation Model (Simple)

• All code lives in CUDA source files (.cu)

• nvcc compiler separates GPU and CPU code

• Inserts calls to appropriate CUDA runtime routines

• GPU code is compiled to PTX or binary

• PTX code will be compiled to binary at runtime

• CPU code is compiled by GCC (or clang)

Fat binary

• End result of nvcc run is a single executable

• On Linux, standard ELF executable

• Contains code for both CPU and GPU

• CUDA automatically sets up everything

• OpenCL does not

• No OpenCL equivalent of nvcc

Outline

Background

Memory

Code

Execution Model

Vector Addition again

__global__
void vector_add(int *a, int *b, int *c, int N) {

...
}

int main(void) {
...
vector_add<<<...>>>(a, b, c, N);

}

Execution starts on the CPU

• Program starts in main, as usual

• On first call to CUDA library, a GPU context is created

• GPU Context == CPU Process

• Can also create one automatically

• Default GPU is chosen automatically per thread

• If multiple GPUs

• Usually the newest, ties broken by the fastest

• This is where default allocations and launches occur

• Can be changed per thread (cudaSetDevice)

Memory Allocation and Copies

• cudaMalloc, etc. used to allocate memory

• CPU waits for allocation

• cudaMemcpy, etc. used to copy memory across

• CPU waits by default for copy to finish

• LATER LECTURES: non-blocking copying APIs

Launch

• Determine a thread block size: say, 256 threads

• Divide work by thread block size

• Round up

• dN/256e

• Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)

Kernel Launch Configuration

• GPU kernels are SPMD kernels

• Single-program, multiple data

• All threads execute the same code

• Number of threads to execute is specified at launch time

• As a grid of B thread blocks of T threads each

• Total threads: B × T

• Reason: Only threads within the same thread block can
communicate with each other (cheaply)

• Other reasons too, but this is the only algorithm-specific reason

Distributing work in the kernel

__global__
vector_add(int *a, int *b, int *c, int N) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = a[tid] + b[tid];

}
}

• Maximum 232 threads supported

• gridDim, blockDim, blockIdx and threadIdx are

CUDA-provided variables

Blocking and Non-blocking APIs

• Blocking API (or operation)

• CPU waits for operation to finish

• e.g. simple cudaMemcpy

• Non-blocking API (or operation)

• CPU does not wait for operation to finish

• e.g. kernel launches

• You can wait explicitly using special CUDA APIs

Helpful Tips

• Each CUDA API call returns a status code

• Check this always

• If an error occurred, this will contain error code

• Error may be related to this API call or previous non-blocking

API calls!

• Use cuda-memcheck tool to detect errors

• Slows down program, but can tell you of many errors

	Background
	Memory
	Code
	Execution Model

