CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA

Sreepathi Pai

October 18, 2017

URCS

Memory

Code

Memory

Code

CUDA programmer's view of the system

- Shared Memory system
 - Same address space
 - Data in the system accessed through load/store instructions
 - E.g., multicore
- Distributed Memory System (e.g. MPI)
 - (Usually) different address space
 - Data in the system accessed through message-passing
 - E.g., clusters

- Does data live in the same address space?
- Is data in the entire system accessed through load/store instructions?

Memory

Code

- Addresses are contained in pointers
- GPU addresses are C/C++ pointers in CPU code
 - True, in CUDA
 - False, in OpenCL (cl::Buffer in CPU)

- Data lives in CPU memory
- Read/Written by CPU using load/store instructions
- Allocated by malloc (or equivalent)
- Freed by free (or equivalent)
- Pointers cannot be deferenced by GPU

- Data lives in GPU memory
- Read/Written by GPU using load/store instructions
- Allocated by cudaMalloc (or cudaMallocManaged)
- Freed by cudaFree
- Pointers cannot be deferenced by CPU
- Data transferred using copies (cudaMemcpy)

Allocating Pinned Memory

- Data lives in CPU memory
- Read/Written by CPU using load/store instructions
- Read/Written by GPU using load/store instructions over PCIe bus
- Same pointer value
- Allocated by cudaMallocHost (or cudaHostMalloc)
- Freed by cudaFree
- No transfers needed!

Mapping Host-allocated Memory to GPUs

- Data lives in CPU memory
- Read/Written by CPU using load/store instructions
- Read/Written by GPU using load/store instructions over PCIe bus
- Allocated by malloc
- Mapped by cudaHostRegister
- GPU uses different pointer (cudaHostGetDevicePointer)
- Freed by free
- No transfers needed!

- Data lives in CPU memory or GPU memory
- Read/Written by CPU using load/store instructions
- Read/Written by GPU using load/store instructions
- But not by both at the same time!
- Same pointer value
- Freed by cudaFree
- No manual transfers needed!
- Data transferred "automagically" behind scenes

Pointer from	Host	GPU	Same Pointer
CPU malloc	Υ	Ν	Ν
cudaMalloc	Ν	Υ	Ν
cudaHostMalloc	Υ	Υ	Y
cudaHostRegister/GetDevicePointer	Υ	Υ	Ν
cudaMallocManaged	Υ	Y	Y

Memory

Code

- CPU code callable from CPU (__host__)
- GPU code callable from CPU (__global__)
- GPU code callable from GPU (__device__)
- Code callable from both CPU and GPU (__host__, __device__)
- CPU code callable from GPU (N/A)

```
__global__
void vector_add(int *a, int *b, int *c, int N) {
    ...
}
int main(void) {
    ...
    vector_add<<<...>>>(a, b, c, N);
}
```

- All code lives in CUDA source files (.cu)
- nvcc compiler separates GPU and CPU code
 - Inserts calls to appropriate CUDA runtime routines
- GPU code is compiled to PTX or binary
 - PTX code will be compiled to binary at runtime
- CPU code is compiled by GCC (or clang)

- End result of nvcc run is a single executable
 - On Linux, standard ELF executable
- Contains code for both CPU and GPU
- CUDA automatically sets up everything
 - OpenCL does not
 - No OpenCL equivalent of nvcc

Memory

Code

```
__global__
void vector_add(int *a, int *b, int *c, int N) {
    ...
}
int main(void) {
    ...
vector_add<<<...>>>(a, b, c, N);
}
```

- Program starts in main, as usual
- On first call to CUDA library, a GPU context is created
 - GPU Context == CPU Process
 - Can also create one automatically
- Default GPU is chosen automatically per thread
 - If multiple GPUs
 - Usually the newest, ties broken by the fastest
 - This is where default allocations and launches occur
 - Can be changed per thread (cudaSetDevice)

- cudaMalloc, etc. used to allocate memory
 - CPU waits for allocation
- cudaMemcpy, etc. used to copy memory across
 - CPU waits by default for copy to finish
 - LATER LECTURES: non-blocking copying APIs

- Determine a thread block size: say, 256 threads
- Divide work by thread block size
 - Round up
 - *[N/*256]
- Configuration can be changed every call

```
int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;
```

```
vector_add<<<blocks, threads>>>(...)
```

- GPU kernels are SPMD kernels
 - Single-program, multiple data
 - All threads execute the same code
- Number of threads to execute is specified at launch time
 - As a grid of B thread blocks of T threads each
 - Total threads: $B \times T$
- Reason: Only threads within the same thread block can communicate with each other (cheaply)
 - Other reasons too, but this is the only algorithm-specific reason

```
__global__
vector_add(int *a, int *b, int *c, int N) {
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if(tid < N) {
        c[tid] = a[tid] + b[tid];
    }
}
```

- Maximum 2³² threads supported
- *gridDim*, *blockDim*, *blockIdx* and *threadIdx* are CUDA-provided variables

- Blocking API (or operation)
 - CPU waits for operation to finish
 - e.g. simple cudaMemcpy
- Non-blocking API (or operation)
 - CPU does not wait for operation to finish
 - e.g. kernel launches
 - You can wait explicitly using special CUDA APIs

- Each CUDA API call returns a status code
 - Check this always
 - If an error occurred, this will contain error code
 - Error may be related to this API call or *previous non-blocking* API calls!
- Use cuda-memcheck tool to detect errors
 - Slows down program, but can tell you of many errors