CSC266 Introduction to Parallel Computing
using GPUs
GPU Architecture | (Execution)

Sreepathi Pai
October 25, 2017

URCS

Quick Recap

Streams and Command Queues
GPU Execution of Kernels
Warp Divergence

More on GPU Occupancy

Quick Recap

e Determine a thread block size: say, 256 threads
e Divide work by thread block size

e Round up

e [N/256]
e Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;

int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)

Kernel Launch Configuration

e GPU kernels are SPMD kernels
e Single-program, multiple data
e All threads execute the same code
e Number of threads to execute is specified at launch time

e As a grid of B thread blocks of T threads each
e Total threads: B x T

e Reason: Only threads within the same thread block can
communicate with each other (cheaply)

e Other reasons too, but this is the only algorithm-specific reason

Blocking and Non-blocking APIs

e Blocking API (or operation)

e CPU waits for operation to finish

e e.g. simple cudaMemcpy
e Non-blocking API (or operation)

e CPU does not wait for operation to finish

e e.g. kernel launches

e You can wait explicitly using special CUDA APIs
e Operations queue up

e Multiple kernels can be launched
e They will execute by default in launch order

Streams and Command Queues

The Default Stream

e A GPU can do multiple things in parallel

e Just like a CPU
e Most common: overlapping memory copies and kernel
executions

e Main programming construct: Stream
e Purely software construct
e Stream is conceptually equivalent to a CPU thread

e Operations in same stream happen in order
e Operations in different streams can happen in any order

Stream 0 is the default stream

e All operations not on an explicit stream are on this stream

Command Queue

Streams

Stream
e Streams map to command

q ueues Hardware Queues

e Hardware construct

CPU
GPU

e Many (streams)-to-one
(hardware queue)

e About 32 hardware queues
in Kepler (Hyper-Q)

Thread
Block
Scheduler

DMA DMA
Engine Engine

Streaming Multiprocessors (SMs)

GPU Execution of Kernels

Why Grids? NVIDIA: Hardware Scalability

Multithreaded (UDA Program

|
| !

GPU with 25Ms GPU with 45Ms

| SMO || SM1 | | SMO || SM1 || sM2 || SM3 |

N N | | -
ok Bk ks k7

Threads to Warps

»
e I I) e
T I I T N)
HEEEEEEE

Warp Lanes

Thread blocks to an SM

111111

100 4556 e 605 S5 6556 - 665 - 5555 - 6555 - 0555
5 0 5 el e

55 5 e 5558 5 55555 555

warpo [[[[T[T TTT[T[~]

0 3

warpt [[[[[T TTTTTTI]

.o . 31

WafP“IIIIIIIIIIIIII--*I

Warp 63 |I|||||||||||||
Warp La SM

GPU Occupancy

e CPU threads share resources by time multiplexing
e One thread owns all CPU resources (registers, etc.) for its
time slice
e Context-switches are performed by OS
e GPU threads do not share resources
e Own fixed partition of resources for entire lifetime of thread
e Context-switches are performed by hardware every few cycles

e Changing number of threads changes utilization of resources

GPU Resources per SM (NVIDIA Kepler)

Resource Available | Maximum
Threads 2048 1024 /block
Shared Memory | 48K (max) | 48K/block
Registers 65536 255/thread
Thread Blocks 16 16/SM

e Every block consumes:
e T threads
e T x R registers where R is registers per thread
e 1 block
e SM shared memory per block (optional)
e The resource that gets exhausted first determines occupancy
and residency
e Occupancy: number of hardware threads utilized
e Residency: number of hardware blocks utilized

GPU Occupancy: Example 1

kernel<<<2048, 32>>>()

o T =32
e thread limit 2048/32 = 64 thread blocks
R =100 (100 x 32 = 3200 per thread block)
e register limit 65536/3200 = 20 thread blocks
e SM=1K
e SM limit 48K /1K = 48 thread blocks

Limiting resource: thread blocks (16)

Residency: 16
Occupancy: (16 x 32)/2048 = 25%

GPU Occupancy: Example 2

kernel<<<2048, 64>>>()

e T =64
e thread limit 2048/64 = 32 thread blocks
R =100 (100 x 64 = 6400 per thread block)
e register limit 65536/6400 =7? thread blocks
e SM=1K
e SM limit 48K /1K = 48 thread blocks

Limiting resource: 7

Residency: ?
Occupancy: (? x 64)/2048 =7%

How many threads?

e Try to maximize utilization (NVIDIA Manual)

e Later today: Better strategy

e Thread blocks are mapped to SMs "whole”

e Atleast one thread block must fit
e No partial thread blocks

e Upto res thread blocks per SM

e res is residency
e Different for different kernels

e Once all SMs are occupied, remaining blocks wait

e Start running once currently running blocks finish

Warp Divergence

SIMT Issue

T
T S

time

e All threads in a warp execute the same instruction (same PC)

e What happens when:

e that instruction is a conditional branch?
e is a load that misses for some threads but not others?

Divergence

e If threads in a warp decide execute different PCs, the warp
splits
e Two directions for a branch

e Two splits
e Each split is executed serially
e Nested branches also split correctly

e Join back at a pre-determined “meet” point

e Immediate post-dominator

if (cond) {

x =1;
} else {
y =1

}

e Assume warps contains four threads each

e Assume only TO, T2 have cond == true.
Time TO T1 T2 T3
0 x=1 x =1
1 y=1 y=1

Time TO T1 T2 T3
0 x=1 x=1 x=1 x=1

Tackling Divergence

e Threads in the same warps should avoid divergent conditions
e Easier said than done
e Threads in the same warp should try to access locations in
same memory line
e Memory divergence repeats requests until all threads have
received data
e Compiler will predicate instructions

e No divergence — both sides executed
e Predicated instructions are executed but do not commit

e Shown as [] below

Time TO T1 T2 T3
0 x=1 [x=1]1 x=1 I[x = 1]
1 [y=11 y=1 [y=11 y=1

More on GPU Occupancy

Occupancy Recap

e GPUs partition resources among running threads
o NVIDIA Manual says maximize occupancy
e Why?

Reasoning about occupancy

kernel <<<x, y>>>()

e Consider:

1 Thread Block

N thread blocks, N equal to number of SMs/SMX
N x Residency thread blocks

e > N x Residency thread blocks

Less Occupancy?

e |s there a case to reduce occupancy/residency?

e i.e. let threads consume more resources?
e smaller thread blocks?

Better Performance at Lower Occupancy

Multiplication of two large matrices, single precision (SGEMM):

Threads per block 512 64 8xsmaller thread blods
Occupancy (G80) 67% 33% 2x lower ocaupancy
Performance (G80) 128 Gflop/s 204 Gflop/s | 1.6x higher performance

Batch of 1024-point complex-to-complex FFTs, single

precision:

Threads per block

Occupancy (G80) 33% 17% 2x lower ocaupancy
Performance (G80) 45 Gflop/s 93 Gflop/s | 2xhigher performance

Volkov, V., “Better Performance at Lower Occupancy”, GTC 2010

Volkov’s Insights

Do more parallel work per thread to hide latency with fewer
threads (i.e. increase ILP)

e Unroll
e Use more registers per thread to access slower shared memory
less
e Shared memory latency comparable to registers, but
e Shared memory throughput is lower!
e Both may be accomplished by computing multiple outputs per
thread
e Note that Volkov underutilizes threads, but maxes out
registers!

e Fermi had 63 registers/thread, Kepler has 255 registers/thread
e Why have a register limit?

	Quick Recap
	Streams and Command Queues
	GPU Execution of Kernels
	Warp Divergence
	More on GPU Occupancy

