CSC573: TSHA
Introduction to Accelerators

Sreepathi Pai
September 5, 2017
URCS
Introduction to Accelerators

GPU Architectures

GPU Programming Models
Introduction to Accelerators

GPU Architectures

GPU Programming Models
Accelerators

- Single-core processors
- Multi-core processors
- What if these aren’t enough?
- Accelerators, specifically GPUs
 - what they are
 - when you should use them
Timeline

- 1980s
 - Geometry Engines
- 1990s
 - Consumer GPUs
 - Out-of-order Superscalars
- 2000s
 - General-purpose GPUs
 - Multicore CPUs
 - Cell BE (Playstation 3)
 - Lots of specialized accelerators in phones
The Graphics Processing Unit (1980s)

- SGI Geometry Engine
- Implemented the *Geometry Pipeline*
 - Hardwired logic
- Embarrassingly Parallel
 - $O(Pixels)$
 - Large number of logic elements
 - High memory bandwidth
- From Kaufman et al. (2009):
GPU 2.0 (circa 2004)

- Like CPUs, GPUs benefited from Moore’s Law
- Evolved from fixed-function hardwired logic to flexible, programmable ALUs
- Around 2004, GPUs were programmable “enough” to do some non-graphics computations
 - Severely limited by graphics programming model (shader programming)
- In 2006, GPUs became “fully” programmable
 - GPGPU: General-Purpose GPU
 - NVIDIA releases “CUDA” language to write non-graphics programs that will run on GPUs
Theoretical GFLOP/s

- NVIDIA GPU Single Precision
- NVIDIA GPU Double Precision
- Intel CPU Double Precision
- Intel CPU Single Precision

Device Timeline:
- GeForce 780 Ti
- GeForce GTX TITAN
- GeForce GTX 680
- Tesla K20X
- Tesla K40
- Tesla M2090
- Tesla C2050
- Ivy Bridge
- Sandy Bridge
- Westmere
- Bloomfield
- Harpertown
- C1060
- GeForce 8800 GTX
- GeForce 7800 GTX
- GeForce 6800 Ultra
- GeForce FX 5800
- Pentium 4

Year Timeline:
- Apr-01
- Sep-02
- Jan-04
- May-05
- Oct-06
- Feb-08
- Jul-09
- Nov-10
- Apr-12
- Aug-13
- Dec-14

NVIDIA CUDA C Programming Guide
• GPUs are widely deployed as accelerators

• Intel Paper
 • 10x vs 100x Myth

• GPUs so successful that other accelerators are dead
 • Sony/IBM Cell BE
 • Clearspeed RSX

• Kepler K40 GPUs from NVIDIA have performance of 4TFlops (peak)
 • CM-5, #1 system in 1993 was 60 Gflops (Linpack)
 • ASCI White (#1 2001) was 4.9 Tflops (Linpack)

Pictures of Titan and Tianhe 1A from the Top500 website.
Accelerator Programming Models

- CPUs have always depended on co-processors
 - I/O co-processors to handle slow I/O
 - Math co-processors to speed up computation
 - H.264 co-processor to play video (Phones)
 - DSPs to handle audio (Phones)
- Many have been transparent
 - Drop in the co-processor and everything sped up
- Or used a function-based model
 - Call a function and it is sped up (e.g. “decode video”)
- The GPU is not a transparent accelerator for general purpose computations
 - Only code using graphics API (e.g. OpenGL) is sped up transparently
- Code must be rewritten to target GPUs
• You must retarget code for the GPU
 • Rewrite, recompile, translate, etc.
Outline

Introduction to Accelerators

GPU Architectures

GPU Programming Models
The Two (Three?) Kinds of GPUs

- Type 1: Discrete GPUs
 - More computational power
 - More memory bandwidth
 - Separate memory

NVIDIA
The Two (Three?) Kinds of GPUs #2

- Type 2: Integrated GPUs
 - Share memory with processor
 - Share bandwidth with processor
 - Consume Less power
 - Can participate in cache coherence
The NVIDIA Kepler
Using a Discrete GPU

- You must retarget code for the GPU
 - Rewrite, recompile, translate, etc.
- Working set must fit in GPU RAM
- You must copy data to/from GPU RAM
 - "You": Programmer, Compiler, Runtime, OS, etc.
 - Some recent hardware can do this for you (it’s slow)
NVIDIA Kepler SMX (i.e. CPU core equivalent)
NVIDIA Kepler SMX Details

- 2-wide Inorder
- 4-wide SMT
 - 2048 threads per core (64 warps)
 - 15 cores
 - Each thread runs the same code (hence SIMT)
- 65536 32-bit registers (256KBytes)
 - A thread can use upto 255 of these
 - *Partitioned* among threads (not shared!)
- 192 ALUs
- 64 Double-precision
- 32 Load/store
- 32 Special Functional Unit
- 64 KB L1/Shared Cache
 - Shared cache is software-managed cache
CPU vs GPU

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockspeed</td>
<td>> 1 GHz</td>
<td>700 MHz</td>
</tr>
<tr>
<td>RAM</td>
<td>GB to TB</td>
<td>12 GB (max)</td>
</tr>
<tr>
<td>Memory B/W</td>
<td>60 GB/s</td>
<td>> 300 GB/s</td>
</tr>
<tr>
<td>Peak FP</td>
<td>< 1 TFlop</td>
<td>> 1 TFlop</td>
</tr>
<tr>
<td>Concurrent Threads</td>
<td>O(10)</td>
<td>O(1000) [O(10000)]</td>
</tr>
<tr>
<td>LLC cache size</td>
<td>> 100MB (L3)</td>
<td>< 2MB (L2)</td>
</tr>
<tr>
<td>[eDRAM] [traditional]</td>
<td>O(10)</td>
<td></td>
</tr>
<tr>
<td>Cache size per thread</td>
<td>O(1 MB)</td>
<td>O(10 bytes)</td>
</tr>
<tr>
<td>Software-managed cache</td>
<td>None</td>
<td>48KB/SMX</td>
</tr>
<tr>
<td>Type</td>
<td>OOO super-scalar</td>
<td>2-way Inorder super-scalar</td>
</tr>
</tbody>
</table>
Using a GPU

- You must retarget code for the GPU
 - Rewrite, recompile, translate, etc.
- Working set must fit in GPU RAM
- You must copy data to/from GPU RAM
 - “You”: Programmer, Compiler, Runtime, OS, etc.
 - Some recent hardware can do this for you
- Data accesses should be streaming
 - Or use scratchpad as user-managed cache
- Lots of parallelism preferred (throughput, not latency)
- SIMD-style parallelism best suited
- High arithmetic intensity (FLOPs/byte) preferred
Showcase GPU Applications

- Image Processing
- Graphics Rendering
- Matrix Multiply
- FFT

See “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU” by V.W.Lee et al. for more examples and a comparison of CPU and GPU.
Outline

Introduction to Accelerators

GPU Architectures

GPU Programming Models
Hierarchy of GPU Programming Models

<table>
<thead>
<tr>
<th>Model</th>
<th>GPU</th>
<th>CPU Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectorizing Compiler</td>
<td>PGI CUDA Fortran</td>
<td>gcc, icc, etc.</td>
</tr>
<tr>
<td>“Drop-in” Libraries</td>
<td>cuBLAS</td>
<td>ATLAS</td>
</tr>
<tr>
<td>Directive-driven</td>
<td>OpenACC, OpenMP-to-CUDA</td>
<td>OpenMP</td>
</tr>
<tr>
<td>High-level languages</td>
<td>pyCUDA</td>
<td>python</td>
</tr>
<tr>
<td>Mid-level languages</td>
<td>OpenCL, CUDA</td>
<td>pthreads + C/C++</td>
</tr>
<tr>
<td>Low-level languages</td>
<td>PTX, Shader</td>
<td>-</td>
</tr>
<tr>
<td>Bare-metal</td>
<td>SASS</td>
<td>Assembly/Machine code</td>
</tr>
</tbody>
</table>
“Drop-in” Libraries

- “Drop-in” replacements for popular CPU libraries, examples from NVIDIA:
 - CUBLAS/NVBLAS for BLAS (e.g. ATLAS)
 - CUFFT for FFTW
 - MAGMA for LAPACK and BLAS
- These libraries may still expect you to manage data transfers manually
- Libraries may support multiple accelerators (GPU + CPU + Xeon Phi)
GPU Libraries

- **NVIDIA Thrust**
 - Like C++ STL, but executes on the GPU
- **Modern GPU**
 - At first glance: high-performance library routines for sorting, searching, reductions, etc.
 - A deeper look: Specific “hard” problems tackled in a different style
- **NVIDIA CUB**
 - Low-level primitives for use in CUDA kernels
Directive-Driven Programming

- OpenACC, new standard for “offloading” parallel work to an accelerator
 - Currently supported only by PGI Accelerator compiler
 - gcc 5.0 support is ongoing
- OpenMPC, a research compiler, can compile OpenMP code + extra directives to CUDA
 - OpenMP 4.0 also supports offload to accelerators
 - Not for GPUs yet

```c
int main(void) {
    double pi = 0.0f; long i;

    #pragma acc parallel loop reduction(+:pi)
    for (i=0; i<N; i++) {
        double t = (double)((i+0.5)/N);
        pi += 4.0/(1.0+t*t);
    }

    printf("pi=%.15f\n", pi/N);
    return 0;
}
```
Python-based Tools (pyCUDA)

```python
import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule

mod = SourceModule(""
__global__ void multiply_them(float *dest, float *a, float *b)
{
    const int i = threadIdx.x;
    dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)

multiply_them(
    drv.Out(dest), drv.In(a), drv.In(b),
    block=(400,1,1), grid=(1,1))

print dest-a*b
```
OpenCL

- C99-based dialect for programming heterogenous systems
 - Originally based on CUDA
 - nomenclature is different
- Supported by more than GPUs
 - Xeon Phi, FPGAs, CPUs, etc.
- Source code is portable (somewhat)
 - Performance may not be!
- Poorly supported by NVIDIA
CUDA

- “Compute Unified Device Architecture”
- First language to allow general-purpose programming for GPUs
 - preceded by shader languages
- Promoted by NVIDIA for their GPUs
- Not supported by any other accelerator
 - though commercial CUDA-to-x86/64 compilers exist
- We will focus on CUDA programs
CUDA Architecture

- From 10000 feet – CUDA is like pthreads
 - CUDA language – C++ dialect
- Host code (CPU) and GPU code in same file
- Special language extensions for GPU code
- CUDA Runtime API
 - Manages runtime GPU environment
 - Allocation of memory, data transfers, synchronization with GPU, etc.
 - Usually invoked by host code
- CUDA Device API
 - Lower-level API that CUDA Runtime API is built upon
CUDA Limitations

- No standard library for GPU functions
- No parallel data structures
- No synchronization primitives (mutex, semaphores, queues, etc.)
 - you can roll your own
 - only atomic\(^*\)() functions provided
- Toolchain not as mature as CPU toolchain
 - Felt intensely in performance debugging
- It’s only been a decade :)
Conclusions

- GPUs are very interesting parallel machines
- They’re not going away
 - Xeon Phi might pose a formidable challenge
- They’re here and now
 - Your laptop probably already contains one
 - Your phone definitely has one