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Parallel Graph Processing is not easy

USA Road Network
24M nodes, 58M edges

LiveJournal Social Network
5M nodes, 69M edges

299ms HD-BFS 84ms

692ms LB-BFS 41ms
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Observations from the “field”

● Different algorithms require different optimizations

– BFS vs SSSP vs Triangle Counting
● Different inputs require different optimizations

– Road vs Social Networks
● Hypothesis: High-performance graph analytics code 

must be customized for inputs and algorithms

– No “one-size fits all” implementation

– If true, we'll need a lot of code
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How IrGL fits in

● IrGL is a language for graph algorithm kernels

– Slightly higher-level than CUDA
● IrGL kernels are compiled to CUDA code

– Incorporated into larger applications
● IrGL compiler applies 3 throughput optimizations

– User can select exact combination

– Yields multiple implementations of algorithm
● Let the compiler generate all the interesting 

variants!



Outline

● IrGL Language

● IrGL Optimizations

● Results
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IrGL Constructs

● Representation for irregular data-parallel algorithms

● Parallelism

– ForAll
● Synchronization

– Atomic

– Exclusive
● Bulk Synchronous Execution

– Iterate

– Pipe
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IrGL Synchronization Constructs

● Atomic: Blocking atomic section

Atomic (lock) {
critical section

}

● Exclusive: Non-blocking, atomic section to obtain 
multiple locks with priority for resolving conflicts 

Exclusive (locks) {
critical section

}
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IrGL Pipe Construct

● IrGL kernels can use 
worklists to track work

● Pipe allows multiple 
kernels to communicate 
worklists

● All items put on a 
worklist by a kernel are 
forwarded to the next 
(dynamic) kernel

Pipe {
// input: bad triangles

 // output: new triangles
Invoke refine_mesh(...)

   // check for new bad tri.
Invoke chk_bad_tri(...)

}

refine_mesh

chk_bad_tri

not 
worklist.empty()
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Example: Level-by-Level BFS 

0

111

222 222

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0 
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}
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Three Optimizations for Bottlenecks

1.Iteration Outlining

– Improve GPU utilization 
for short kernels

2.Nested Parallelism

– Improve load balance

3. Cooperative Conversion

– Reduce atomics

● Unoptimized BFS

– ~15 lines of CUDA

– 505ms on USA road 
network

● Optimized BFS

– ~200 lines of CUDA

– 120ms on the same 
graph

4.2x Performance Difference!
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Optimization #1: Iteration Outlining
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Bottleneck #1: Launching Short 
Kernels

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0 
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

● USA road network: 6261 bfs calls
● Average bfs call duration: 16 µs
● Total time should be 16*6261 = 100 ms 
● Actual time is 320 ms: 3.2x slower!
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Iterative Algorithm Timeline

bfs

bfs

bfs

bfs

Time

CPU GPU

launch

Idling

Idling

Idling
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GPU Utilization for Short Kernels
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Improving Utilization

GPU

bfs

bfs

bfs

bfs

Time

Control Kernel

CPU

launch

● Generate Control 
Kernel to execute on 
GPU

● Control kernel uses 
function calls on GPU 
for each iteration

● Separates iterations 
with device-wide 
barriers

– Tricky to get right!
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Benefits of Iteration Outlining

● Iteration Outlining can deliver up to 4x performance 
improvements

● Short kernels occur primarily in high-diameter, low-
degree graphs

– e.g. road networks
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Optimization #2: Nested Parallelism
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Bottleneck #2: Load Imbalance from 
Inner-loop Serialization 

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0 
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

Worklist

Threads
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Exploiting Nested Parallelism

● Generate code to execute inner 
loop in parallel

– Inner loop trip counts not known 
until runtime

● Use Inspector/Executor 
approach at runtime

● Primary challenges:

– Minimize Executor overhead

– Best-performing Executor varies 
by algorithm and input

Threads

Threads
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Scheduling Inner Loop Iterations

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) Scheduling Fine-grained (FG) Scheduling

Synchronization
Barriers
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Multi-Scheduler Execution

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) + Finegrained (FG) Scheduling

Use thread-block (TB) 
for high-degree nodes

Use fine-grained (FG) 
for low-degree nodes



23 

Which Schedulers?

Policy BFS SSSP-NF Triangle

Serial Inner Loop 1.00 1.00 1.00

TB 0.25 0.33 0.46

Warp 0.86 1.42 1.52

Finegrained (FG) 0.64 0.72 0.87

TB+Warp 1.05 1.40 1.51

TB+FG 1.10 1.46 1.55

Warp+FG 1.14 1.56 1.23

TB+Warp+FG 1.15 1.60 1.24

Speedup relative to Serial execution of inner-loop iterations on a synthetic scale-free 
RMAT22 graph. Higher is faster. Legend: SSSP NF -- SSSP NearFar
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Benefits of Nested Parallelization

● Speedups depend on graph, but seen up to 1.9x

● Benefits graphs containing nodes with high degree

– e.g. social networks
● Negatively affects graphs with low, uniform degrees

– e.g. road networks

– Future work: low-overhead schedulers
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Optimization #3: Cooperative Conversion
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Bottleneck #3: Atomics

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0 
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

● Atomic Throughput on GPU: 1 per clock cycle
– Roughly translated: 2.4 GB/s
– Memory bandwidth: 288GB/s

pos = atomicAdd(Worklist.length, 1)
Worklist.items[pos] = edge.dst
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Aggregating Atomics: Basic Idea

atomicAdd(..., 1)

Thread Thread

Write

atomicAdd(..., 5)
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Challenge: Conditional Pushes

if(edge.dst.level == INF)
Worklist.push(edge.dst)

...

Time
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Challenge: Conditional Pushes

if(edge.dst.level == INF)
Worklist.push(edge.dst)

...

Time

Must aggregate atomics across threads
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Cooperative Conversion

● Optimization to reduce atomics by cooperating 
across threads

● IrGL compiler supports all 3 possible GPU levels:

– Thread

– Warp (32 contiguous threads)

– Thread Block (up to 32 warps)
● Primary challenge: 

– Safe placement of barriers for synchronization

– Solved through novel Focal Point Analysis
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Warp-level Aggregation

Kernel bfs_kernel(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

...
start = Worklist.reserve_warp(1)
Worklist.write(start, edge.dst)
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Inside reserve_warp

T0 T1 T2 T3 T4 T5 T6 T7

0 1 1 2 3 3 4 5_offset

T0: pos = atomicAdd(Worklist.length, 5)
    broadcast pos to other threads in warp

return pos + _offset

T0 T1 T2 T3 T4 T5 T6 T7

1 0 1 1 0 1 1 0size

(assume a warp has 8 threads)

(warp prefix sum)

reserve_warp
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Thread-block aggregation?

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)
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Inside reserve_tb

reserve_tb

...

0 31

...

32 63

...

64 95

...

Barrier required to synchronize
warps, so can't be placed

in conditionals

Warp 0
Warp 1

Warp 2
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reserve_tb is incorrectly placed!

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)
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Solution: Place reserve_tb at a Focal 
Point

● Focal Points [Pai and Pingali, OOPSLA 2016]

– All threads pass through a focal point all the time

– Can be computed from control dependences

– Informally, if the execution of some code depends 
only on uniform branches, it is a focal point

● Uniform Branches

– branch decided the same way by all threads [in 
scope of a barrier]

– Extends to loops: Uniform loops
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reserve_tb placed

Kernel bfs(graph, ...)
ForAll(node in Worklist)

UniformForAll(edge in graph.edges(node))
will_push = 0
if(edge.dst.level == INF)

will_push = 1
to_push = edge

start = Worklist.reserve_tb(will_push)
Worklist.write_cond(willpush, start, to_push)

Made uniform
by nested parallelism
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Benefits of Cooperative Conversion

● Decreases number of worklist atomics by 2x to 25x

– Varies by application

– Varies by graph
● Benefits all graphs and all applications that use a 

worklist

– Makes concurrent worklist viable

– Leads to work-efficient implementations
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Summary

● IrGL compiler performs 3 key optimizations

● Iteration Outlining

– eliminates kernel launch bottlenecks

● Nested Data Parallelism

– reduces inner-loop serialization

● Cooperative Conversion 

– reduces atomics in lock-free data-structures

● Allows auto-tuning for optimizations



Outline
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● Results
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Evaluation

● Eight irregular algorithms

– Breadth-First Search (BFS) [Merrill et al., 2012]

– Connected Components (CC) [Soman et al., 2010] 

– Maximal Independent Set (MIS) [Che et al., 2013]

– Minimum Spanning Tree (MST) [da Silva Sousa et al. 
2015]

– PageRank (PR) [Elsen and Vaidyanathan, 2014]

– Single-Source Shortest Path (SSSP) [Davidson et al. 
2014]

– Triangle Counting (TRI) [Polak et al. 2015]

– Delaunay Mesh Refinement (DMR) [Nasre et al., 2013]
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System and Inputs

● Tesla K40 GPU

● Graphs

– Road Networks 
● USA: 24M vertices, 58M edges
● CAL: 1.9M vertices, 4.7M edge
● NY: 262K vertices, 600K edges 

– RMAT (synthetic scale-free)
● RMAT22: 4M vertices, 16M edges
● RMAT20: 1M vertices, 4M edges
● RMAT16: 65K vertices, 256K edges

– Grid (1024x1024)

– DMR Meshes: 10M points, 5M points, 1M points 
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Overall Performance

Note: Each benchmark had a single set of optimizations applied to it

Best
Handwritten
Code
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Comparison to NVIDIA nvgraph SSSP

227s 131s
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● Graph Algorithms

● Sparse Linear Algebra

● Discrete-event Simulation

● Adaptive Simulations

● Brute-force Searches

– Constraint solvers
● Graph databases

● ...

Irregular Data-Parallel Algorithms
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Conclusion

● Graph analytics on GPUs requires 3 key throughput 
optimizations to obtain good performance

– Iteration Outlining

– Nested Parallelism

– Cooperative Conversion
● The IrGL compiler automates these optimizations

– Faster by up to 6x, median 1.4x

– Faster than nvgraph



Thank you! 
Questions?

sreepai@ices.utexas.edu
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