
Automatic Compiler-Based Optimization
of Graph Analytics for the GPU

Sreepathi Pai
The University of Texas at Austin

May 8, 2017
NVIDIA GTC

2

Parallel Graph Processing is not easy

USA Road Network
24M nodes, 58M edges

LiveJournal Social Network
5M nodes, 69M edges

299ms HD-BFS 84ms

692ms LB-BFS 41ms

3

Observations from the “field”

● Different algorithms require different optimizations

– BFS vs SSSP vs Triangle Counting
● Different inputs require different optimizations

– Road vs Social Networks
● Hypothesis: High-performance graph analytics code

must be customized for inputs and algorithms

– No “one-size fits all” implementation

– If true, we'll need a lot of code

4

How IrGL fits in

● IrGL is a language for graph algorithm kernels

– Slightly higher-level than CUDA
● IrGL kernels are compiled to CUDA code

– Incorporated into larger applications
● IrGL compiler applies 3 throughput optimizations

– User can select exact combination

– Yields multiple implementations of algorithm
● Let the compiler generate all the interesting

variants!

Outline

● IrGL Language

● IrGL Optimizations

● Results

6

IrGL Constructs

● Representation for irregular data-parallel algorithms

● Parallelism

– ForAll
● Synchronization

– Atomic

– Exclusive
● Bulk Synchronous Execution

– Iterate

– Pipe

7

IrGL Synchronization Constructs

● Atomic: Blocking atomic section

Atomic (lock) {
critical section

}

● Exclusive: Non-blocking, atomic section to obtain
multiple locks with priority for resolving conflicts

Exclusive (locks) {
critical section

}

8

IrGL Pipe Construct

● IrGL kernels can use
worklists to track work

● Pipe allows multiple
kernels to communicate
worklists

● All items put on a
worklist by a kernel are
forwarded to the next
(dynamic) kernel

Pipe {
// input: bad triangles

 // output: new triangles
Invoke refine_mesh(...)

 // check for new bad tri.
Invoke chk_bad_tri(...)

}

refine_mesh

chk_bad_tri

not
worklist.empty()

9

Example: Level-by-Level BFS

0

111

222 222

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

10

Three Optimizations for Bottlenecks

1.Iteration Outlining

– Improve GPU utilization
for short kernels

2.Nested Parallelism

– Improve load balance

3. Cooperative Conversion

– Reduce atomics

● Unoptimized BFS

– ~15 lines of CUDA

– 505ms on USA road
network

● Optimized BFS

– ~200 lines of CUDA

– 120ms on the same
graph

4.2x Performance Difference!

Outline

● IrGL Language

● IrGL Optimizations

● Results

12

Optimization #1: Iteration Outlining

13

Bottleneck #1: Launching Short
Kernels

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

● USA road network: 6261 bfs calls
● Average bfs call duration: 16 µs
● Total time should be 16*6261 = 100 ms
● Actual time is 320 ms: 3.2x slower!

14

Iterative Algorithm Timeline

bfs

bfs

bfs

bfs

Time

CPU GPU

launch

Idling

Idling

Idling

15

GPU Utilization for Short Kernels

16

Improving Utilization

GPU

bfs

bfs

bfs

bfs

Time

Control Kernel

CPU

launch

● Generate Control
Kernel to execute on
GPU

● Control kernel uses
function calls on GPU
for each iteration

● Separates iterations
with device-wide
barriers

– Tricky to get right!

17

Benefits of Iteration Outlining

● Iteration Outlining can deliver up to 4x performance
improvements

● Short kernels occur primarily in high-diameter, low-
degree graphs

– e.g. road networks

18

Optimization #2: Nested Parallelism

19

Bottleneck #2: Load Imbalance from
Inner-loop Serialization

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

Worklist

Threads

20

Exploiting Nested Parallelism

● Generate code to execute inner
loop in parallel

– Inner loop trip counts not known
until runtime

● Use Inspector/Executor
approach at runtime

● Primary challenges:

– Minimize Executor overhead

– Best-performing Executor varies
by algorithm and input

Threads

Threads

21

Scheduling Inner Loop Iterations

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) Scheduling Fine-grained (FG) Scheduling

Synchronization
Barriers

22

Multi-Scheduler Execution

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) + Finegrained (FG) Scheduling

Use thread-block (TB)
for high-degree nodes

Use fine-grained (FG)
for low-degree nodes

23

Which Schedulers?

Policy BFS SSSP-NF Triangle

Serial Inner Loop 1.00 1.00 1.00

TB 0.25 0.33 0.46

Warp 0.86 1.42 1.52

Finegrained (FG) 0.64 0.72 0.87

TB+Warp 1.05 1.40 1.51

TB+FG 1.10 1.46 1.55

Warp+FG 1.14 1.56 1.23

TB+Warp+FG 1.15 1.60 1.24

Speedup relative to Serial execution of inner-loop iterations on a synthetic scale-free
RMAT22 graph. Higher is faster. Legend: SSSP NF -- SSSP NearFar

24

Benefits of Nested Parallelization

● Speedups depend on graph, but seen up to 1.9x

● Benefits graphs containing nodes with high degree

– e.g. social networks
● Negatively affects graphs with low, uniform degrees

– e.g. road networks

– Future work: low-overhead schedulers

25

Optimization #3: Cooperative Conversion

26

Bottleneck #3: Atomics

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

● Atomic Throughput on GPU: 1 per clock cycle
– Roughly translated: 2.4 GB/s
– Memory bandwidth: 288GB/s

pos = atomicAdd(Worklist.length, 1)
Worklist.items[pos] = edge.dst

27

Aggregating Atomics: Basic Idea

atomicAdd(..., 1)

Thread Thread

Write

atomicAdd(..., 5)

28

Challenge: Conditional Pushes

if(edge.dst.level == INF)
Worklist.push(edge.dst)

...

Time

29

Challenge: Conditional Pushes

if(edge.dst.level == INF)
Worklist.push(edge.dst)

...

Time

Must aggregate atomics across threads

30

Cooperative Conversion

● Optimization to reduce atomics by cooperating
across threads

● IrGL compiler supports all 3 possible GPU levels:

– Thread

– Warp (32 contiguous threads)

– Thread Block (up to 32 warps)
● Primary challenge:

– Safe placement of barriers for synchronization

– Solved through novel Focal Point Analysis

31

Warp-level Aggregation

Kernel bfs_kernel(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

...
start = Worklist.reserve_warp(1)
Worklist.write(start, edge.dst)

32

Inside reserve_warp

T0 T1 T2 T3 T4 T5 T6 T7

0 1 1 2 3 3 4 5_offset

T0: pos = atomicAdd(Worklist.length, 5)
 broadcast pos to other threads in warp

return pos + _offset

T0 T1 T2 T3 T4 T5 T6 T7

1 0 1 1 0 1 1 0size

(assume a warp has 8 threads)

(warp prefix sum)

reserve_warp

33

Thread-block aggregation?

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)

34

Inside reserve_tb

reserve_tb

...

0 31

...

32 63

...

64 95

...

Barrier required to synchronize
warps, so can't be placed

in conditionals

Warp 0
Warp 1

Warp 2

35

reserve_tb is incorrectly placed!

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)

36

Solution: Place reserve_tb at a Focal
Point

● Focal Points [Pai and Pingali, OOPSLA 2016]

– All threads pass through a focal point all the time

– Can be computed from control dependences

– Informally, if the execution of some code depends
only on uniform branches, it is a focal point

● Uniform Branches

– branch decided the same way by all threads [in
scope of a barrier]

– Extends to loops: Uniform loops

37

reserve_tb placed

Kernel bfs(graph, ...)
ForAll(node in Worklist)

UniformForAll(edge in graph.edges(node))
will_push = 0
if(edge.dst.level == INF)

will_push = 1
to_push = edge

start = Worklist.reserve_tb(will_push)
Worklist.write_cond(willpush, start, to_push)

Made uniform
by nested parallelism

38

Benefits of Cooperative Conversion

● Decreases number of worklist atomics by 2x to 25x

– Varies by application

– Varies by graph
● Benefits all graphs and all applications that use a

worklist

– Makes concurrent worklist viable

– Leads to work-efficient implementations

39

Summary

● IrGL compiler performs 3 key optimizations

● Iteration Outlining

– eliminates kernel launch bottlenecks

● Nested Data Parallelism

– reduces inner-loop serialization

● Cooperative Conversion

– reduces atomics in lock-free data-structures

● Allows auto-tuning for optimizations

Outline

● IrGL Language

● IrGL Optimizations

● Results

41

Evaluation

● Eight irregular algorithms

– Breadth-First Search (BFS) [Merrill et al., 2012]

– Connected Components (CC) [Soman et al., 2010]

– Maximal Independent Set (MIS) [Che et al., 2013]

– Minimum Spanning Tree (MST) [da Silva Sousa et al.
2015]

– PageRank (PR) [Elsen and Vaidyanathan, 2014]

– Single-Source Shortest Path (SSSP) [Davidson et al.
2014]

– Triangle Counting (TRI) [Polak et al. 2015]

– Delaunay Mesh Refinement (DMR) [Nasre et al., 2013]

42

System and Inputs

● Tesla K40 GPU

● Graphs

– Road Networks
● USA: 24M vertices, 58M edges
● CAL: 1.9M vertices, 4.7M edge
● NY: 262K vertices, 600K edges

– RMAT (synthetic scale-free)
● RMAT22: 4M vertices, 16M edges
● RMAT20: 1M vertices, 4M edges
● RMAT16: 65K vertices, 256K edges

– Grid (1024x1024)

– DMR Meshes: 10M points, 5M points, 1M points

43

Overall Performance

Note: Each benchmark had a single set of optimizations applied to it

Best
Handwritten
Code

44

Comparison to NVIDIA nvgraph SSSP

227s 131s

45

● Graph Algorithms

● Sparse Linear Algebra

● Discrete-event Simulation

● Adaptive Simulations

● Brute-force Searches

– Constraint solvers
● Graph databases

● ...

Irregular Data-Parallel Algorithms

46

Conclusion

● Graph analytics on GPUs requires 3 key throughput
optimizations to obtain good performance

– Iteration Outlining

– Nested Parallelism

– Cooperative Conversion
● The IrGL compiler automates these optimizations

– Faster by up to 6x, median 1.4x

– Faster than nvgraph

Thank you!
Questions?

sreepai@ices.utexas.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

