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Abstract—Although there is an extensive literature on GPU
implementations of graph algorithms, we do not yet have a
clear understanding of how implementation choices impact
performance. As a step towards this goal, we studied how
the choice of synchronization mechanism affects the end-to-
end performance of complex graph algorithms, using stochastic
gradient descent (SGD) as an exemplar. We implemented seven
synchronization strategies for this application and evaluated
them on two GPU platforms, using both road networks and
social network graphs as inputs. Our experiments showed that
although none of the seven strategies dominates the rest, it is
possible to use properties of the platform and input graph to
predict the best strategy.

I. INTRODUCTION

Over the past decade, many irregular graph algorithms
have been implemented on GPUs. These include single-
source shortest path (SSSP) [1] and all-pairs shortest paths
algorithms [2], breadth-first search (BFS) [3], minimum
spanning tree computation [4], [5], the MPM algorithm
for max-flow computation [6], 0-CFA analysis [7] and
Andersen-style points-to analysis [8].

When writing code for such algorithms, GPU program-
mers are faced with many implementation choices, but the
performance implications of these choices are usually not
obvious. Some implementation choices can be easily ex-
plored by changing compiler flags or modifying a few lines
of code, but others lead to entirely different programs so
exploring the space of possibilities may involve substantial
programmer effort. The choice of synchronization strategy
is an example. At a high level, programmers have a choice
between coarse-grain, barrier-style synchronization or fine-
grain synchronization using constructs like atomics or locks.
To use barrier-style synchronization, the program must be
executed in rounds and the tasks in each round must be
independent; with fine-grain synchronization, there may not
be a notion of rounds, and concurrently executing tasks may
read and write the same locations provided these memory
accesses are properly synchronized. Not only are the result-
ing programs very different but each synchronization style
can itself be implemented in many ways, as we show in
this paper. Furthermore, the performance of irregular graph
programs can be very dependent on the structure of the
input graph: a program that performs well for power-law

Synchronization 
strategies

Online Offline

Node-Locked
NL

Edge-
Locked EL

Subgraph 
Matchings All Graph 

Matchings

AGM-E

SGM
AGM-N

Maximal 
Matchings

Diagonal 
Matchings

Diag

BlkDiag

Figure 1: Taxonomy of scheduling strategies.

graphs may perform poorly for high-diameter graphs like
road networks. Given all these complications, programmers
would obviously benefit from guidelines that would help
them make the right implementation choices.

As a step towards this goal, we consider the problem of
implementing synchronization for graph algorithms, using
non-negative matrix factorization (NMF) [9] as an exemplar.
NMF is used to solve problems such as product recommen-
dation and object recognition [10]. In Section II, we describe
a particular approach for solving NMF called stochastic
gradient descent (SGD), which is an important general
optimization method in machine learning. Figure 1 shows
a taxonomy of scheduling strategies for implementing SGD
on GPUs.

In Section III, we describe offline techniques, which pre-
process the input to find independent tasks before executing
the program, and generate code in which all synchroniza-
tion is barrier synchronization. Some of these techniques
compute maximal matchings in the graph to minimize the
number of barrier synchronizations. We also explore a
class of preprocessing techniques called diagonal matchings,
which have lower preprocessing time but may require more
barrier synchronization.

In Section IV, we describe two online schedules that we
call Edge-locked (EL) and Node-locked (NL) implementa-



tions, which use fine-grain synchronization to coordinate the
parallel tasks.

In Section V, we evaluate the performance of these
implementations of SGD on two platforms, an NVIDIA
Tesla K40C and an AMD Hawaii Radeon R9-290X for both
power-law graphs and road networks. Key insights from this
study include the following.

• Conventional wisdom is that fine-grain synchronization
is expensive on GPUs. Therefore, we expected that
ignoring preprocessing time, the offline implementa-
tions, which use barrier synchronization, would perform
much better than the online ones. To our surprise, we
found that this was true only on the AMD GPU; on
the Tesla, online schedules perform better for all types
of graphs. We provide a simple performance model to
explain these results.

• On the Tesla, neither online implementation dominates
the other one. For power-law graphs, EL performs
better but for road networks, NL performs better. We
provide an explanation for this result. This result moti-
vated us to design a hybrid online scheme that performs
better than both EL and NL.

• On the AMD GPU, the choice of offline strategy
depends on the weight given to preprocessing time. If
preprocessing time can be ignored, the implementation
based on maximal matching gives better performance.
If not, the diagonal matchings implementation gives
better end-to-end performance.

Related work is described in Section VI.

II. BACKGROUND

Recommendation systems [11] solve problems like the
Netflix challenge problem which can be described abstractly
as follows: given a set of users U , a set of movies M , and
an incomplete database of movie ratings by users, predict
how users will rate movies they have not yet rated.

One way to solve this problem is through non-negative
matrix factorization, which is a kind of low-rank approxi-
mation. The database of ratings is represented as a sparse
matrix R in which the rows represent users and the columns
represent movies. Low-rank approximation finds two low-
rank dense matrices W and H such that R≈W∗H as
shown in Figure 2. That is, each non-zero entry in R
must be roughly equal to the corresponding entry in W∗H;
the remaining entries in W∗H are the predictions for the
missing ratings.

Low-rank approximation can be formulated as a graph
problem. The database of ratings R is represented as a
bipartite graph between users and items; if user u assigned
a rating r to a movie m, there is an edge (u,m) in the
graph with weight r. The matrices W and H are represented
by unknown vectors of length t associated with the nodes
representing users and movies respectively, as shown in
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Figure 2: Low-rank approximation of a sparse matrix R by low
rank matrices W : |U | × t and H : t× |M |. Usually t≈16.
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Figure 3: Sample bipartite graph between 6 users and 4 movies.
Edge labels indicate ratings.

Figure 3 (these are known as feature vectors). The problem
is to find values for these vectors such that for every edge
(u,m) with weight r, the inner-product of the vectors on
nodes u and m is roughly equal to r.

SGD is an iterative algorithm that computes feature vec-
tors by making a number of sweeps over the bipartite graph.
The vectors are initialized to some arbitrary values. In each
sweep, all edges (u,m) are visited. If the inner-product of
the vectors on nodes u and m is not equal to the weight
on edge (u,m), the difference is used to update the two
feature vectors. Sweeps are terminated when some heuristic
measure of convergence is reached.

Parallelism can be exploited in each sweep by processing
edges in parallel. Two edges can be processed in parallel
provided they do not share a node; otherwise, they are said
to conflict and must be processed serially. In our example,
edges a and b conflict because they share the same movie
m0; similarly, edges a and f conflict because they share the
same user u0. Thus, the programmer needs to synchronize
accesses to edges to avoid processing conflicting edges
concurrently. The rest of this paper explores the performance
implications of different ways of implementing this synchro-
nization.



III. OFFLINE SCHEDULES

In a given graph, a set of edges is said to constitute
a matching if no two edges in that set have a node in
common [12]. Matchings are useful for parallel SGD com-
putation because the edges in a matching can be processed
in parallel without the need for synchronization. A maximal
matching is a matching m such that every edge not in m
conflicts with some edge in m.

Offline schedules preprocess the graph by partitioning its
edges into a set of matchings. The SGD computation is then
implemented as a series of supersteps separated by barriers;
in each superstep, the edges in one matching are processed
in parallel without synchronization. In Section III-A, we
describe maximal-matching schedules which partition the
edges of the graph into a sequence of maximal matchings.

The second approach relies on the structural properties of
the bipartite graph. If the graph is viewed as an adjacency
matrix, entries along the diagonals of the matrix can be
processed concurrently as they do not share any end-points.
This observation allows us to utilize sparse linear algebra
frameworks such as CUDA-CHiLL [13] to synthesize schedul-
ing routines for graph applications such as SGD. These
diagonal-matching schedules are described in Section III-B.

To illustrate the schedules, we use the graph of Figure 3
and a hypothetical GPU with two threads. Our actual im-
plementations run on an NVIDIA Tesla K40 and AMD
R9-290X, as explained in Section V, so the two-thread
hypothetical GPU is used only for illustration.

A. Maximal matchings schedules

The first category of schedules rely on maximal match-
ings. Algorithm 1 shows the algorithm to construct a
maximal-matching schedule. To build a conflict free sched-
ule, i) a maximal matching m is constructed from the graph;
ii) the edges belonging to the maximal matching are removed
from the graph; and, iii) the process repeated until there are
no edges left in the graph. We refer to this set of maximal
matching as a matchings-set M . The number of matchings in
M is greater than or equal to the max-degree of the graph
Dmax since all edges of that node must be processed in
separate matchings. Figure 4(a) shows the matchings-set M
for the sample graph.

Algorithm 1 Algorithm for constructing a maximal-
matching schedule. Given a graph g, returns the set of
matchings M .

M = φ
while edges(g) > 0 do

m = maximal matching(g)
g = g \m
M =M ∪ {m}

end while
return M

Given a matchings-set M , we describe three different
strategies for scheduling edges within a set m ∈M .

1) All-Graph Matching-Edge schedule (AGM-E): In an
AGM-E schedule, matchings are processed one at a time.
Each thread grabs an edge, load the labels at the end-points
of that edge, performs the SGD computations, and updates
those labels. This process is repeated until there are no more
edges left to be processed in that matching. Note that AGM-E
makes no attempt to schedule edges connected to the same
node on the same thread.

For our sample graph, an edge schedule of this sort is
shown in Figure 4(b). In our model GPU, we can execute
only two edges per step so the processing of the first
matching takes two steps, and a sweep over all edges takes
eight steps.

2) All-Graph Matching-Node schedule (AGM-N): Unlike
the AGM-E schedules, these schedules attempt to exploit
locality in processing edges and utilize the local shared
memory of the GPU to store the data associated with the
nodes.

In our implementation, edges connected to a given movie
node are all processed by the same thread. This is accom-
plished by processing movie nodes in blocks of T nodes,
where T is the number of threads (the last block may have
fewer nodes). Consider Figure 4(c), which shows a matrix
in which the rows are the matchings and the columns are
the movie nodes. Conceptually, we divide the columns of
this matrix into blocks of T nodes, and process these blocks
sequentially. Since we have two threads in our example, m0

and m1 are in the first block, and m2 and m3 are in the
second block. When processing a given block of nodes,
we iterate over all matchings in sequence, processing the
appropriate edges as shown in Figure 4(d).

Each block column is processed by making a kernel call.
Before a block column of movie nodes is processed, the
associated movie node data is read into shared-memory.
Global inter-thread block synchronization is used to separate
the processing of edges from different matchings. After the
processing is complete, the movie node data is written back
into memory.

3) Sub-Graph Matching (SGM): This strategy can be
viewed as a refinement of AGM-N. For large graphs, the
number of nodes will be more than the number of threads
T . In that case, computing a matchings-set for the entire
graph and then repackaging it for the AGM-N schedule can be
inefficient. In Figure 4(d), it takes four steps to execute the
second block of nodes consisting of {m2,m3} even though
edges i and j can be processed in parallel with edges k and
l respectively. Intuitively, if the number of threads is smaller
than the number of nodes, the nodes will be processed in
blocks, so matchings should be computed only for nodes in
the same block.

This is accomplished by the SGM scheduling strategy.
SGM first sorts the nodes in decreasing order of node degree.
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Figure 4: Maximal matchings schedules executed by different strategies for sample input. Tables with M in top-left cell indicate matching
sets, whereas tables with T in top-left cell indicate schedules where each row indicates a time-step and each column lists the edges
processed by a thread.

Then it partitions the nodes into blocks of size T . For
each block, the matchings-set is computed, and edges are
scheduled for that matchings-set as in AGM-N. The sub-graph
matchings for the sample graph is shown in Figure 4(e), and
the SGM schedule is shown in Figure 4(f).

The preprocessing time for SGM is different from the
preprocessing time for the all-graph matching variants.
When building all-graph matching, a single matchings-set
is built for the entire graph. However, for SGM, we build
the matchings-set for each block of nodes separately.

B. Diagonal matchings schedules

The schedules discussed in Section III-A are based on
maximal matchings. To reduce the preprocessing overhead,
schedules can be constructed using matchings that are not
necessarily maximal.

One way to construct matchings cheaply is to exploit
the matrix representation of the graph [14]. In the matrix
representation, edges along a diagonal do not share any
nodes and can be processed concurrently. Different diagonals
must be serialized, however.

Diagonal matchings schedules can be advantageous as
they facilitate temporal reuse of the nodes, but the benefits
must outweigh the overhead of the barrier synchronization
between diagonals. We increase the granularity of work
within a diagonal, and therefore reduce the frequency of
barrier synchronization, using two diagonal variants: (1) Diag
(Section III-B1) and, (2) BlkDiag (Section III-B2).

1) Diagonal (Diag) schedule: Diag also exploits the par-
allelism within a single edge by processing the update to the
feature vector in parallel. This ordering also achieves global
memory coalescing for accesses to the feature vector across
threads. We launch a 2-D grid of threads of dimension F by
E, where F is the size of feature vector (e.g., 16 floats), and
E is the number of edges to be processed in a kernel call.
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Figure 5: Diagonal matchings schedules for the sample input.

A thread (i, j) processes the ith component of the feature
vectors of the end points for edge j.

The maximum number of diagonals is |M |+ |U | − 1 and
the maximum width of a diagonal will be the number of
columns. In our example, 4 movies (columns) and 6 users
(rows) result in 4 + 6 − 1 = 9 diagonals with the longest
diagonal containing 4 entries. The complete list of diagonals,
starting from the top is given in Figure 5(a).

2) Block-Diagonal (BlkDiag) schedule: The BlkDiag
schedule reduces the size of the matrix by blocking along
both dimensions. This reduced matrix has a reduced number
of diagonals – if the movies are blocked by a factor R, and
the users by a factor C, then the total number of diagonals
in the BlkDiag schedule is |M |/R+ |U |/C − 1.

A diagonal schedule obtained after 2×2 blocking is shown
in Figure 5(b). There are now only 4 diagonals with each
block consisting of at most 4 edges. Our implementation
assigns each block to a thread. Within a block, the same
set of movies and users are used repeatedly and the feature
vectors corresponding to those rows and columns are cached
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indicates edges scheduled at that time slot, and each column
indicates the item processed, if any, by each thread.

in registers or GPU shared memory.
Comparison to Matchings: The diagonal matchings

schedules are relatively easy to compute; the diagonal is
determined by the difference in the row and column indices
for an entry. It is, however, conservative because it will
schedule entries concurrently only if they are along the same
diagonal. In contrast, the maximal matchings schedules are
more liberal but also costly to compute. Since the maximal
matching does not constrain itself to any diagonal, it can
discover more entries to schedule concurrently. For instance,
in our example d3 contains (a, g). We can also schedule
either of i or j with these entries since they do not have
any end point in common. The diagonal matchings schedule
will not schedule i or j with d3 since neither is along the
diagonal d3.

IV. ONLINE SCHEDULES

Online schedules assign edges to threads without attempt-
ing to avoid conflicts. Therefore, synchronization primitives
such as atomics must be used to ensure mutual exclusion.

We describe two strategies. The Edge-locked strategy EL,
described in Section IV-A, assigns edges to threads. The
Node-locked strategy NL, described in Section IV-B, assigns
nodes to threads.

A. Edge-locked (EL)

In each SGD sweep, threads make a number of passes
over the set of edges until all edges have been processed.
To process an edge, the thread attempts to acquire locks on
its two nodes, and updates node labels if lock acquisition
succeeds. Otherwise, the edge is deferred and retried in the
next pass.

One possible schedule for the edges of Figure 3 is shown
in Figure 6(a). We assume that the edges in the graph are

stored in alphabetical order, which is similar to a CSR
representation of Figure 3. Since our hypothetical GPU can
execute two tasks at once, it will pick chunks of two edges
from the work-list and try to process them. The first two
edges are {a, b}. Since they share the same source m0, only
one thread succeeds in acquiring the lock, and edge b is
delayed to the next pass. The next chunk to be executed is
{c, d}, and only one edge gets processed while the other is
moved to the next pass, and so on. The second pass, which
starts at step 6, processes edges {b, d, h, j, l} which could
not be processed in the first pass.

The main problem with this strategy is that if edges
connected to the same movie are tried concurrently, only
one of the threads will make progress. The original ordering
of the edges was derived from the CSR layout of the graph,
which stores the edges of a given node in adjacent mem-
ory locations. This introduces a large number of conflicts,
particularly for high-degree nodes.

To ameliorate this problem, we can shuffle edges ran-
domly1 before assigning them to threads. This lowers the
likelihood that edges sharing the same movie are scheduled
concurrently. For our sample graph, we shuffle the edges
(for instance to {k, e, b, d, j, c, h, g, f, a, i, l}) and obtain a
schedule as shown in Figure 6(b). By mixing the edges of
m0 with edges from other nodes, we reduce the likelihood
of conflicts. Experiments on actual input graphs confirm that
shuffling can improve performance significantly.

For EL, preprocessing time involves the shuffling of edges
to reduce the conflicts as described above. The execution
time includes the time to perform kernel calls and the
determination of whether all edges have been processed.

B. Node-locked (NL)

The Node-locked (NL) scheduling strategy assigns movie
nodes to threads. This has two benefits. First, there is no
need to acquire locks on the source node (i.e. movie) since
a node is assigned to a single thread. Locks will still need
to be acquired on the destination nodes (i.e. user). Second,
unlike the EL schedule whose access patterns make it hard
to exploit locality, the NL schedule can exploit reuse of the
source node data.

Like the EL schedule, the NL schedule uses multiple passes
to process all the edges of a graph.

Figure 6(c) presents a possible NL-schedule. We first
schedule nodes m0 and m1, and their edges are processed
in order. In the first step, all the edges for m0 are processed
and marked while f and g are deferred to the next pass.
In the next pass, f and g which were unmarked in the
previous pass, are processed and marked. Next, we schedule
the remaining nodes m2 and m3, which concludes without
any conflict.

1Our implementation uses the std::random shuffle call to shuffle the
edges.



Table I: Specifications of the platforms used for evaluation.

Host Device
K40 Scientific Linux 6.6, Ker-

nel 2.6.32 on Intel Xeon
E5-2609 with 32G RAM

Tesla K40c with
12GB VRAM

R9-290X Ubuntu 14.04, Kernel
3.16.0 on Intel i7-3770K
with 8GB RAM

AMD R9-290X with
8GB VRAM

NL behaves similar to EL for the initial few passes as it
can find work easily. But after the initial few passes, there
is a large overhead of finding new work as each thread has
to scan a node’s entire edge-list. This can be prohibitive for
high-degree nodes as the repeated scans become expensive.

The use of shared memory for storing the movie node’s la-
tent vector reduces the residency of the kernel, which means
the number of edges that can be concurrently processed on
the GPU is reduced. Further, since only one thread processes
all edges of a node, nodes with high degrees can lead to
serialization and load imbalance. The use of marks implies
that all edges must be scanned in every pass to determine if
they must be processed. As we shall see in the evaluation,
these factors play a major role in the performance of NL.

There is no preprocessing required for NL since the graph
representation allows threads to traverse neighbors of each
movie/user directly. The execution time includes the time to
invoke the kernels as well as polling the number of edges
processed to check for completion.

V. EVALUATION

Our evaluation examines the performance of the different
synchronization schemes on two hardware platforms de-
scribed in Table I. The online and maximal matching sched-
ules are implemented2 in OpenCL 1.2, the latest supported
by NVIDIA The diagonal matchings schedules are generated
via CUDA-CHiLL [13].

We use twelve input graphs in our experiments (Table II).
Eight are scale-free networks which have a power-law degree
distribution with the max-degree Dmax shown in the table.
These resemble real-life inputs to recommendation systems.
To study the effect of input graph structure on performance,
we also evaluate four road networks with relatively uniform
degree distribution. The column labeled EL(s) in Table II
shows the running times of the EL version of SGD for
each combination of input and platform. In the rest of this
section, the running times of all other versions of SGD
are normalized with respect to the running time of the EL
version for that combination of input and platform.

A. Overall performance

Since fine-grain synchronization on GPUs is believed
to be expensive compared to barrier synchronization, we

2Source code is available from http://iss.ices.utexas.edu.

Table II: Characteristics of the scale-free and uniform inputs. |V |
is the total number of vertices in the graph, |E| is the number
of edges in the graph, and Dmax represents the maximum degree
of any node in the graph. EL(s) is the running time of the EL
versions in seconds.

|V | |E| Dmax EL(s)

K40 R9-290X
Scale-free

STACK 0.6M 0.1M 6119 0.04 0.18
IMDB 1.3M 3.7M 1590 0.07 0.38
WIKI 0.1M 5.0M 100022 0.39 1.04
BGG 0.1M 6.0M 43331 0.22 0.53
CITP 7.5M 16.5M 779 0.32 1.69
POKEC 3.2M 22.3M 14734 0.42 2.3
LIVEJ 9.6M 68.9M 20293 1.5 7.2
NFLIX 0.4M 99.0M 227715 2.13 5.28

Road
CAL 3.7M 4.6M 7 0.08 0.49
E 7.1M 8.7M 9 0.19 0.91
W 12.5M 15.1M 9 0.37 1.58
CTR 28.1M 33.8M 8 0.9 3.54

expected the offline implementations to perform better on
both platforms (ignoring preprocessing costs).

Figure 7 presents the running times of the different SGD
implementations (ignoring preprocessing costs), normalized
to the running time of the EL version.

The first important point to note is that on the K40, the
online implementations are best for both scale-free and road
networks, even if we ignore the preprocessing cost for the
offline implementations.

Figure 7 shows that on the K40, the best online implemen-
tation is 1.3× and 2× faster for power-law graphs and road
networks respectively than the best offline implementation.
In contrast, on the R9-290X, the maximal matching schedule
is nearly twice as fast as the best online schedule, a result
that is more in tune with conventional wisdom.

To investigate this further, we measured the throughput
of atomic operations on both GPUs [15]. Figure 9 shows
that for atomic writes to the same location (i.e., atomics
with the slowest throughput), the NVIDIA K40 achieves a
throughput of roughly 600M atomics/s (nearly 1 atomic a
clock) whereas the AMD R9-290X languishes far behind at
45M atomics/s.

This explains why the online implementations perform
poorly on the AMD GPU: the NL and EL versions have to
do at least one and two atomics per edge respectively, and
atomics are relatively slow on this GPU. In contrast, the
offline implementations execute a variable, but considerably
fewer, number of atomics to implement the device-side
barrier synchronization.

Nevertheless, the fact that atomics are relatively fast on
the K40 does not explain why the EL version performs so
much better than the offline ones for power-law graphs even
though it performs much more fine-grain synchronization.

The explanation for this counterintuitive behavior is the
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Figure 7: Geomean normalized runtime of scheduling schemes over the two input classes evaluated over two platforms. The runtimes are
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following. Since offline schedules are based on matchings,
they can process at most one edge connected to a given node
between successive barriers. Let dm be the number of edges
connected to the highest degree node N in the graph. An
offline schedule must have at least dm matchings, so if p is
the average time for processing an edge, the execution time
of the program is at least dm(p+ b) where b is the cost of
a barrier.

In an online schedule on the other hand, it is possible for
several edges connected to node N to be processed between
successive barriers due to optimistic concurrency. If on the
average, a fraction f of edges connected to N are processed
in each step and the cost of fine-grain synchronization to
process one edge is l, the time to process all the edges
connected to N is at most (dmf(p+ l) + b)/f since it will
take 1/f steps to process all the edges connected to N . This
can be simplified to dm(p+ l)+ (b/f). The first term is the
cost to process the edges, and the second term is the cost of
barrier synchronization.

Therefore the relative costs are:

dmp+ b(dm) vs. dm(p+ l) + b(1/f)

If l, the cost of fine-grain synchronization, is very high, the
reduction in barrier synchronization may not pay off, as on
the R9-290X. However, if fine-grain synchronization is not
very expensive and the online schedule can process multiple
edges from high-degree nodes in each step, the total cost
of barrier synchronization is lowered substantially, and the
online schedule wins like on the K40.

Offline implementations: Ignoring preprocessing time,
the diagonal-based schemes are slower than the maximal
matching schemes on the K403. This is expected because the
diagonal schedules process fewer edges between successive
barriers, so they also execute more barrier operations.

3As our compiler produces CUDA code, we were unable to run these on
the AMD GPU.
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Figure 8: Speedup of hybrid schedule over EL on the different
GPUs across the two input classes. Higher is better.

However, if preprocessing time is taken into account,
the diagonal schedules are faster than the matching-based
versions for scale-free graphs. Thus, when processing scale-
free graphs once (or if the graph structure changes), diagonal
schedules should be preferred over the offline matching-
based versions.

B. Hybrid schedules

Figure 7 also reveals that on the K40, while the online
schemes outperform the maximal matchings schemes, the
best-performing schedule varies by input class. EL performs
better on scale-free inputs while NL suffers from load im-
balance as it processes edges of a high-degree node serially
which outweighs the benefit from shared memory reuse.
However, NL performs better on road networks as it is able
to better utilize the locality by scheduling nodes to threads.
Since the degree of nodes in a road network is uniform and
small, the overhead of scanning the edge-list of each node
on each pass is small. We could choose between EL and
NL using input characteristics by using a framework such as
Nitro [16]. Alternatively, a hybrid schedule could be used.

We investigated such a hybrid online schedule which



runs NL as the first pass and processes all the remaining
edges with EL schedule. NL processes most of the edges
while EL processes the remaining edges. NL also exploits
shared memory. This combination of schedules produces
better performance on both the scale-free networks as well
as road networks compared to a single online schedule as
shown in Figure 8.

We also investigated if combining an online scheme
with an offline scheme could improve overall performance.
Essentially, we observed that the performance of maximal
matchings schedule is limited by the highest degree nodes –
the edges of these nodes must occur in different matchings
and hence the highest degree degree node determines the
length of the critical path. Therefore, we built a hybrid
schedule which processes a set of high-degree nodes using
an EL schedule and the remaining nodes using SGM. Un-
fortunately, while this improves the performance of SGM,
the performance of EL is severely affected, since the high-
degree nodes exhibit a large number of conflicts amongst
themselves.

C. Offline schedules

On scale-free inputs, AGM-E performs best amongst the
maximal matching schemes as it mimics EL without the
overhead of locks. AGM-N suffers the most from the high
degree nodes in a scale-free graph as all the threads have to
go through at least |M | ≥ dm time steps. This overhead is
avoided by SGM, which produces better matching based on
the number of hardware threads. Road network graphs which
have uniformly low degree nodes allow AGM-E, AGM-N and
SGM to outperform EL.

The sparsity of the inputs affects the performance of
the diagonal matchings schemes. The matching schedules
greedily pack as many edges into a matching set producing
a smaller number of matchings compared to a diagonal
schedule which produces a matching for every non-empty
diagonal.

VI. RELATED WORK

We build upon earlier work that described efficient SGD
implementations on NVIDIA GPUs [17]. Based on that
preliminary study, we expanded our investigation to the per-
formance of synchronization constructs available on multiple
GPU hardware platforms to derive general lessons that are
applicable to other graph-based algorithms which use fine-
grained synchronization.

Recent work [18] has investigated performance of appli-
cations that use GPU atomic constructs which write to one
location. Our work studies applications that use locking con-
structs whose atomics write to different locations and hence
the techniques they recommend to improve performance are
not applicable.

Application specific scheduling strategies on the GPU
have been explored extensively and led to highly efficient

Figure 9: Atomic throughput of the NVIDIA K40 and AMD R9-
290X. X-axis shows the number of threads launched, and Y-axis
shows the throughput of atomics operations achieved. The K40
peaks at about 600M atomic operations per second, while the R9-
290X saturates at about 45M.

implementation of irregular applications[19], [1], [20]. This
paper aims to explore the different scheduling strategies for
a broader class of problems, topology driven algorithms, of
which SGD is one instance.

GPUs have accelerated machine learning in many appli-
cations [21], [22], [23], however SGD is not commonly
parallelized. GPU A-SGD [24] exploits both model and
data parallelism to speed up neural network training for
computer vision. Dean et al. [25] compare the performance
of a GPU implementation for speech model training and
observed a large overhead compared to a CPU cluster.
Collaborative filtering and support vector machines have also
been implemented on the GPU [26] and shown to perform
comparable to CPU implementations.

The diagonal scheduling schemes Diag and BlkDiag are
based on the DIA format used commonly in standard dis-
cretization of partial differential equations or the application
of stencil operators to grids. The DIA format has been
parallelized on a GPU [27] in the context of the SpMV
kernel. However, in SpMV, the diagonals can be processed
concurrently while SGD must process diagonals serially. The
block diagonal format has also been used in stencil based
solvers for partial differential equations [28]. The derivation
of the blocks containing non-zero entries in BlkDiag is similar
to the Block-CSR format in OSKI [29], where the column
and row indices of each entry of the matrix are traversed
to identify the corresponding block position of the non-zero
entry.

VII. CONCLUSION

In this paper, we studied the impact of the choice of syn-
chronization strategy on the performance of SGD, a widely
used kernel in machine learning. It is a step towards the
ultimate goal of providing guidelines to GPU programmers
for making implementation choices when coding irregular
graph programs. We implemented seven synchronization



strategies for this application and evaluated them on two
GPU platforms using both road networks and social net-
work graphs as input. The synchronization strategies can be
classified as offline strategies and online strategies. Offline
strategies preprocess the graph to find independent tasks that
can be run in parallel with barrier synchronization. Online
strategies do not require preprocessing and use fine-grain
synchronization to ensure that tasks execute atomically.

Although conventional wisdom tells us that online strate-
gies are not competitive because of the cost of fine-grain
synchronization on GPUs, we found that this was true only
on one of the GPUs in our study. On the other GPU, the cost
of synchronization was small enough that online schedules
could be competitive, and in fact they outperformed offline
schedules, particularly for power-law graphs. Furthermore,
our results showed that power-law and road networks re-
quired different online schedules because of an interaction
between load-balancing and locality. This motivated us to
invent a hybrid online schedule that dominated the other
schedules.

Even on devices with slow atomics, the exact choice
of offline schedule is not clearcut. For computations that
involve scale-free graphs, customizing the lock-free schedule
to the device, as we do with the SGM strategy, to better
utilize the hardware, can improve performance significantly.

Performance programming of GPUs is currently an art.
We believe that studies like the one in this paper are needed
to make it into a science.
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