
Registered Report: Generating Test Suites for
GPU Instruction Sets through

Mutation and Equivalence Checking

Shoham Shitrit
University of Rochester
sshitrit@u.rochester.edu

Sreepathi Pai
University of Rochester
sree@cs.rochester.edu

Abstract—Formal semantics for instruction sets can be used to
validate implementations through formal verification. However,
testing is often the only feasible method when checking an artifact
such as a hardware processor, a simulator, or a compiler. In this
work, we construct a pipeline that can be used to automatically
generate a test suite for an instruction set from its executable
semantics. Our method mutates the formal semantics, expressed
as a C program, to introduce bugs in the semantics. Using a
bounded model checker, we then check the mutated semantics
to the original for equivalence. Since the mutated and original
semantics are usually not equivalent, this yields counterexamples
which can be used to construct a test suite. By combining a
mutation testing engine with a bounded model checker, we obtain
a fully automatic method for constructing test suites for a given
formal semantics. We intend to instantiate this on a formal
semantics of a portion of NVIDIA’s PTX instruction set for GPUs
that we have developed. We will compare to our existing method
of testing that uses stratified random sampling and evaluate
effectiveness, cost, and feasibility.

I. INTRODUCTION

Formal semantics for the instruction sets of many pro-
cessors are now available [1, 2]. These semantics can be
used to validate processor implementations through formal
verification. In many cases, software interpreters that are
correct-by-construction can be automatically extracted from
these semantics. However, formal verification cannot be used
or is too expensive for many implementations of instruction
sets. A user who only has access to hardware processor and
no access to the internals has no way of formally verifying
it. Tools such as high-performance virtual machines, dynamic
binary translators, compilers, etc. all utilize instruction set
semantics but are very difficult to verify formally.

Exhaustive testing can be used to validate implementations
of instruction sets and, in theory, achieve the same level of
assurance as verification. However, the input space of even
individual instructions is so large as to render exhaustive
testing impractical. Randomized testing can be used instead
to achieve a high level of assurance but sampling strategies
can significantly affect the quality of the test suite. Moreover,

both exhaustive and randomized testing do not make use of
the formal semantics, a point that is usually in their favour. In
this work, we explore how formal semantics can be used to
seed an effective and automatic test generation strategies for
instruction sets.

Our work is essentially model-based test generation with
the formal semantics specifying the model. The crux of our test
generation idea can be traced back to Carrington and Stocks [3]
where formal specifications expressed in Z were mutated and
tests generated to distinguish the mutant specifications from
the original specification. Our work in this paper is based
on a similar idea, but our specifications describe instruction
sets, are encoded in C, and we use model checking to verify
equivalence. This is implemented in a fully automatic test suite
generation pipeline. Our evaluation focuses on an empirical
analysis of our pipeline and its suitability in generating tests
for a real-world instruction set.

We focus on NVIDIA’s PTX instruction set [4], a virtual
instruction not unlike LLVM IR, but for NVIDIA’s GPUs.
NVIDIA only provides an informal description of PTX. We
have formalized this description in a custom domain-specific
language from which we extract the C semantics used in
this work. Our method is restricted to instructions whose
behaviour is completely defined by their inputs. More com-
plicated instructions whose behaviour depends on internal,
implementation-specific, invisible GPU state are not supported
by our current framework. These instructions do not consume
inputs or produce outputs in the conventional sense. Con-
cretely, this means instructions that enforce behaviour like
memory consistency, synchronization, etc. are out of scope for
our technique. These instructions are tested using orthogonal
strategies like litmus tests [5].

Our contributions are as follows:

• We construct and evaluate a test generation pipeline
that uses mutation testing to introduce bugs in an
executable specification and equivalence checking to
generate inputs to detect those bugs.

• We describe an alternate method for constructing test
suites based on stratified random sampling to serve as
a point for comparison.

• We find that our pipeline can construct inputs that
expose bugs that are missed by stratified sampling-
based method and at relatively low cost in CPU time.

International Fuzzing Workshop (FUZZING) 2022
27 February 2022, Virtual
ISBN 1-891562-77-0
https://dx.doi.org/10.14722/fuzzing.2022.23xxx
www.ndss-symposium.org

f l o a t e x e c u t e a d d r m f t z s a t f 3 2 (f l o a t
s r c1 , f l o a t s r c 2) {

f l o a t tmp ds t ;
f l o a t d s t ;
s r c 1 = FTZ (s r c 1) ;
s r c 2 = FTZ (s r c 2) ;
tmp ds t = SATURATE(ADD ROUND(s rc1 ,

s r c2 , FE DOWNWARD)) ;
tmp ds t = FTZ (tmp ds t) ;
d s t = tmp ds t ;
re turn d s t ;

}
Listing 1. The semantics of the PTX add.rm.ftz.sat.f32 instruction
expressed as a C program.

• We find some bugs in C code can introduce non-
determinism which makes testing for them nearly
impossible without specialized instrumention.

• We evaluate the possibility of generating a test suite
fully using our technique and find it to be time
consuming, compared to augmenting an existing test
suite

We present preliminary data on 12 PTX instructions which
operate on floating-point inputs and that comprise arithmetic,
logical and elementary math functions.

II. MOTIVATING EXAMPLE

To provide an overview of our technique, we demonstrate
it on Listing 1 which is a C program semantically equivalent
to the PTX add.rm.ftz.sat.f32 instruction. The instruc-
tion adds two 32-bit floating point numbers together rounding
towards negative infinity (.rm) and saturating the result to lie
between [0.0, 1.0], while flushing subnormal inputs and output
floating point numbers to zero (.ftz).

In the implementation, the FTZ function checks if a floating
point number is a subnormal and returns a zero with the sign
of the original number when it is, or the original number
otherwise. The SATURATE function forces the output of the
rounding add (ADD_ROUND) to lie in [0.0, 1.0] by saturating
negative values to 0.0 and positive values greater than 1.0 to
1.0.

Consider now a real-life buggy implementation of these
semantics in the CUDA compiler where FTZ was not applied
to src1 and src2. To detect this bug, the values of src1 and
src2 must obviously be subnormal floats. However, their sum
must be a normal number to avoid the bug being masked by the
FTZ on tmp_dst. Using similar reasoning, it is easy to show
that if a buggy implementation omitted the FTZ on the sum
(i.e. FTZ(tmp_dst) but preserved the FTZ applications on
the inputs, the bug will only be caught if the inputs are normal
floating point values that sum to a subnormal value. Since
the inputs and outputs must obey a specific relationship to
detect these bugs, existing methods such as random sampling
and even branch coverage can fail to generate inputs that will
unearth the bug.

Yet, given the buggy implementation and the original
semantics, it is possible, in theory, to check the two for

Oracle
Semantics

Test Suite

Test Mutated
Semantics

Tests fail

All tests pass

Check
Equivalence

EquivalentNot Equivalent

Generate
Mutations

Extract
Counterexamples

Fig. 1. A pipeline for generating test suites based on mutation generation
and equivalence checking.

equivalence. Since the semantics are expressed as C programs,
any tool that can check equivalence of C programs can be used.
In our work, we use CBMC [6], a bounded model checker for
C programs. The check asserts that for all inputs x and y that
are floating point numbers, the two implementations are equal:

f l o a t x , y ;
a s s e r t (a d d r m f t z s a t f 3 2 o r i g i n a l (x , y) ==

a d d r m f t z s a t f 3 2 b u g g y (x , y)) ;

When the two functions are not equivalent, CBMC will
yield counter-examples that cause this assertion fails. These
counter-examples can then be added to the test suite.

We note that equivalence checking is undecidable in gen-
eral. However, several features of instruction set semantics
make this less of an issue in practice. First, instruction set
semantics are usually simple, performing bitwise manipula-
tions on fixed-size inputs. Second, loops if present, are almost
always bounded. Thus, checking the equivalence of instruction
set semantics usually boils down to checking the equivalence
of small, straight-line programs, a far more tractable task.

Given an equivalence checker and the correct semantics,
we can now generate a test suite by creating buggy versions
of the semantics and identifying the inputs that distinguish
the buggy versions from the original semantics. This test suite
can then be used to validate implementations which cannot
be formally verified. We use mutation testing to generate the
buggy versions of the semantics.

III. IMPLEMENTATION

Our framework for test suite generation for instruction set
semantics using mutation testing and equivalence checking is
shown in Figure 1.

A. Overview

We are provided with an oracle semantics for the NVIDIA’s
PTX instruction set for its GPUs as semantically equivalent
C programs. Such C programs can be extracted from an
existing formal semantics such as those encoded in SAIL [7]
but executable models can also be constructed from formal
specifications written in K [8]. An existing test suite consisting
of input–output pairs for each instruction is also provided. This
test suite is not strictly necessary. When provided, however, our
technique will only focus on mutations that are not detected

2

by the existing test suite. Thus, our technique can improve the
quality of an existing test suite. In the following discussion,
we always assume a test suite is provided since an empty test
suite is acceptable as well.

The oracle semantics for each instruction are handed to a
mutation generator. The resulting mutants can be regarded as
buggy versions of the oracle semantics, where the bugs are
the mutations that were introduced. These mutants are tested
against the existing test suite. If tests fail for all mutations,
the pipeline stops, as the existing test suite is strong enough
to detect all introduced mutations.

Each mutant that survives the test suite proceeds to the
equivalence checker, a step that does not usually exist in
typical mutation testing scenarios. The equivalence checker
will consider one mutation at a time and verify equivalence
with the oracle semantics. Since a mutation–oracle pair is
usually not semantically equivalent, this verification will fail.
With an appropriate tool, a counter-example can be extracted
showing that the same inputs produce different outputs for the
mutant and the oracle. This test case differentiates the oracle
and the mutation and can be added to the test suite.

In general, deciding when to stop this pipeline is unclear.
There are a finite number of functions that take two n-bit
inputs, but this number is very large. We stop when we run
out of mutants. Thus, the quality of the pipeline is heavily
dependent on the mutation generator.

B. Mutation Generation and Testing

The mutation framework utilized in this pipeline is MUSIC
(“MUtation analySIs tool with high Configurability and exten-
sibility”) [9]. MUSIC mutates the AST of the oracle C program
and outputs a mutated C program. This allows us to CBMC, the
bounded model checker for C, which supports reasoning about
floating point arithmetic. Other mutation frameworks (e.g.
[10]) could be used if coupled with an equivalence checker
that supports floating point operations.

MUSIC produces a number of mutant programs with each
mutant containing a single mutation chosen from a pre-defined
library of mutations. If these mutants fail existing tests, they
are discarded. Only mutants that pass all existing tests and
survive move on to the equivalence checking stage.

MUSIC generates all the mutants in a single invocation.
However, the testing of each of these mutants can be done in
parallel since they are a collection of independent tasks. In our
Python implementation of the pipeline, we use the facilities of
the built-in multiprocessing module to test mutants in
parallel.

In this stage of the pipeline, we can measure the effective-
ness of the existing test suite by computing a mutation score
– the number of killed mutations divided by the total number
of mutations. The closer the mutation score is to 1.0, the more
mutants the test suite has killed, and thus the more resilient
the test suite is to detecting bugs in the program.

C. Equivalence Checking and Testing

A non-empty set of mutant survivors indicates that the
existing test suite is incapable of differentiating between them

/ * p r e c e d i n g t h i s and n o t shown i s t h e
code from L i s t i n g 1 * /

f l o a t m u t a t e d f u n c t i o n (f l o a t s r c1 , f l o a t
s r c 2)

{
f l o a t tmp ds t ;
f l o a t d s t ;
s r c 1 = FTZ (s r c 1) ;
s r c 2 = FTZ (s r c 2) ;
tmp ds t = SATURATE(ADD ROUND(s rc1 , s r c2 ,

FE DOWNWARD)) ;
;
d s t = tmp ds t ;
re turn d s t ;

}

i n t main () {
f l o a t v a r i a b l e 0 ;
f l o a t v a r i a b l e 1 ;
f l o a t r e s u l t =

e x e c u t e a d d r m f t z s a t f 3 2 (
v a r i a b l e 0 , v a r i a b l e 1) ;

f l o a t m u t a t e d r e s u l t = m u t a t e d f u n c t i o n (
v a r i a b l e 0 , v a r i a b l e 1) ;

a s s e r t (r e s u l t == m u t a t e d r e s u l t) ;
re turn 0 ;

}
Listing 2. A mutated version of add.rm.ftz.sat.f32 C semantics that
omits the FTZ on the output variable tmp_dst with the code in main that
drives CBMC.

and the oracle semantics. Thus, either all the mutants are
semantically equivalent to the oracle semantics or the test suite
is incomplete. Traditional mutation testing frameworks rely on
the user to investigate these survivors to figure out which of
these cases a survivor falls into.

However, an equivalence checker can distinguish these
two cases. In our technique, we use a model checker to
verify equivalence. For our purposes, model checkers are ideal
since they will not only verify equivalence, but also yield
counterexamples when the programs are not equivalent.

We use the C Bounded Model Checker (CMBC). CBMC
converts C programs into logical models expressed in SMT-
LIB language. Then, it discharges assertions about the C
program using existing SAT/SMT solvers. If the assertions fail,
CBMC will produce a trace of an execution of the program
that causes the assertion to fail. From this trace, we can extract
the input values and use the oracle to generate the expected
output. The input–output pair can then be added to the existing
test suite.

Consider as an example of this procedure, Listing 2, which
shows the mutated version of add.rm.ftz.sat.f32 and
the main function that sets up the equivalence test. Note that
since variable_0 and variable_1 are not initialized,
their values are non-deterministic, causing CBMC to check
the assertion over all possible values.

Predictably, this mutated version fails the equivalence

3

check, and we obtain the following values from the CBMC
trace, shown here in hexadecimal float notation:

v a r i a b l e 0 = −0x1 . d953fp−124
v a r i a b l e 1 = 0x1 . 0 a34p−123
m u t a t e d r e s u l t = 0x1 . d8a08p−127

Both the input variables are normal numbers indicated by
exponents greater than -127. However, their sum – the output
of mutated function – is clearly a subnormal number. Lacking
the FTZ on tmp_dst, this subnormal escapes out as a return
value. The original function would have returned 0 in this
case. The procedure has generated exactly the inputs we were
looking for – two normal numbers that sum to a subnormal.

Model checking is sound and exact. It produces no false
positives unlike techniques such as abstract interpretation [11].
However, this means that the primary limitation of model
checking is state-space explosion. Therefore, like its name
implies, CBMC is limited to bounded programs. This means
that all loops in the program must have a fixed upper bound
so that before model checking CBMC can unroll all loops up
to that bound.

Nevertheless, CBMC is a very good fit for our needs. The
PTX instruction set semantics when expressed as C programs
do have loops, but all of them have finite bounds. We note that
none of the programs in this preliminary study have loops.
They are also relatively small programs that do not make
much use of the C standard library. CBMC also supports
reasoning about IEEE floating point semantics [12, 13] which
is critical to generate tests for the large number of floating
point instructions supported by the GPU.

Like testing mutations, each invocation of CBMC on a
survived mutant can be executed in parallel. Similar to that
stage, we run equivalence checks in parallel using Python’s
built-in facilities.

IV. STRATIFIED RANDOM SAMPLING TEST SUITE
GENERATION

To compare our proposed test generation framework, we
use a test suite generated using stratified random sampling.
This technique uses the types of the inputs to generate test
cases. Each test case is a randomly sampled value from a
predefined and fixed set of strata for a type.

As an example, the strata for 32-bit
unsigned integers are defined as the set
{{0}, {1}, [2,UINT MAX), {UINT MAX}} where each
element is itself a set and represents a strata. Here, there are
four strata, three of which are the singleton sets containing
0, 1, and UINT MAX and the fourth consists all the other
positive numbers. For an instruction consuming a single
unsigned 32-bit integer, our procedure would produce four
inputs, one from each strata. Random sampling would only
be used for the set [2,UINT MAX), the test cases would
always contain 0, 1, and UINT MAX.

For a instruction that takes n inputs, we would select the
Cartesian product of the n sample sets to yield the test cases.
Thus, all instructions consuming two 32-bit unsigned integers
would have 16 test cases. Thus, only type and arity decide the
inputs used, not the semantics of the instruction per se. The

TABLE I. SAMPLING STRATA FOR EACH TYPE OF PARAMETER TO A
PTX INSTRUCTION. b IS THE BITWIDTH OF THE INTEGER, min AND max
ARE THE MINIMUM AND MAXIMUM NORMAL FLOATING POINT NUMBERS,

minε AND maxε ARE THEIR SUBNORMAL ANALOGUES, nan IS THE
IEEE754 NOT-A-NUMBER.

Type Strata
Unsigned integers {0}, {1}, [2, 2b − 1), {2b − 1},
Signed Integers {−2b−1}, {0}, {1}, (−2b−1, 2b−1−

1), {2b−1 − 1}
Floats (Numbers) [−max,−min], [−maxε,−minε],

{−0.0}, {+0.0}, [+minε,
+maxε], [+min,+max]

Float (Special) {−nan}, {−∞}, {+∞}, {+nan}

maximum number of test cases produced by our combinatorial
strategy is 1728, for 3-input instructions whose arguments are
floating point numbers.

The strata definitions are currently ad hoc and aim to maxi-
mize parameter coverage as well as incorporate all “boundary”
values. In particular, we want to elicit exceptional and un-
defined behaviour such as divide-by-zero, integer overflows,
etc. Since we always take at least one sample from each
strata, the elements of the singleton sets in Table I will always
be included. Stratified sampling performed significantly better
than a pure random sampling strategy that considered every
n-bit pattern equally likely. In hindsight, this is not surprising,
since bit patterns representing a nan or∞ are fewer in number
than those representing the normal numbers, for example.

Unfortunately, an automatic criteria for defining strata is
not known. This means that this is not a fully automatic
method, unlike the combination of mutation generation and
equivalence checking.

V. EVALUATION

The goal of our evaluation is to answer the following
research questions. The first five questions naturally arise as
observations from each stage of the pipeline. The last three
questions investigate properties of our proposed method.

RQ1. How effective is mutation testing at generating mutants
that pass our existing test suite generated by stratified random
sampling? The premise of our method is that it will generate
buggy versions that evade our current test suite. Effectiveness
is measured by the count of mutants surviving our current
test suite that is generated by the stratified random sampling
method detailed in Section IV.

RQ2. For mutants that evade the test suite, how many are
caught later by the counter-examples generated by the equiv-
alence checker? This evaluates if the equivalence checker can
indeed generate inputs to detect the mutated versions of the
semantics and is measured by the increase in the number of
mutants killed by the original test suite when augmented with
the newly generated inputs.

RQ3. How many mutants are only caught by the equivalence
checker and continue to escape being caught by the test suite
even after it has been augmented with counter-examples?
Ideally, the inputs generated by the equivalence checker should
result in the mutant being detected during testing, thus this
number should be zero. Surprisingly, we found this is not
always the case, pointing to a limitation of testing methods
that we did not fully appreciate when we started.

4

RQ4. Which mutations lead to syntactic differences but are
semantically identical? To be most useful, every syntactically
distinct mutant should also be semantically distinct from the
original program. Here, we investigate why some mutants re-
main semantically identical despite being syntactically distinct,
pointing to an additional way in which the quality of mutation
generators may be evaluated using equivalence checkers.

RQ5. What are the costs of this pipeline? Measured primarily
as time consumed, we provide data on how long it takes for
each stage of the pipeline.

RQ6. What is the applicability of this pipeline? Although
we provide preliminary results on 12 arithmetic and logical
instructions that consume floats, we possess the semantics for
4085 arithmetic and logic instructions that span integral and
floating point types of various sizes. Although, in principle,
these are supported by our pipeline, we have not yet inves-
tigated this empirically. In particular, we are concerned that
some instructions, especially bit-level manipulation instruc-
tions, might stress our equivalence checker.

RQ7. How sensitive is the pipeline to the mutation generator
and the equivalence checker? Although we use MUSIC and
CBMC, there are similar tools that can be used in the pipeline.
Although none of these support exactly what we want – C-
level mutation and support for floating point arithmetic – it
would still be interesting to evaluate piecemeal if additional
mutations are generated that are missed by the test suite created
through our pipeline. Likewise, using a symbolic execution
like KLEE [14] for equivalence checking would provide a nice
contrast to CBMC.

RQ8. Can our pipeline replace a stratified random sampling
approach? Our pipeline is fully automated, in contrast to
stratified sampling which requires manual specification of the
strata. Our primary metric here is cost. It is difficult to evaluate
coverage since that would involve finding buggy programs that
only our stratified sampling-based test suite will catch which
implies those bugs cannot be induced by a mutation-based
method.

RQ9. How effective is a state-of-the-art fuzzer compared to
equivalence checking? It is not hard to imagine replacing the
equivalence checker with a fuzzer that attempts to discover the
inputs that differentiate the mutants. We will use libFuzzer [15]
to compare to equivalence checking using CBMC. The fuzzer
will be given the same time that CBMC took. (This question
was suggested by a reviewer.)

In this work, we provide preliminary observations for a
set of 12 instructions, all operating on floating point inputs.
MUSIC (commit 891d9ef), based on LLVM 7, was used
to mutate programs. CBMC 5.38 was used to perform the
equivalence checks using the built-in MiniSAT solver. The
timing results were obtained on a machine with AMD EPYC
7502P 32-core processor and 256GB of RAM running Ubuntu
18.04LTS. Each reported time is the average of 5 runs along
with its 95% confidence interval.

Overall, we find that our proposed pipeline is effective at
accomplishing our basic goals – mutation testing does generate
buggy mutants that escape our existing test suite, equivalence
checking is able to detect semantic differences and generate
the exact inputs required to distinguish them, and the cost is

TABLE II. THE FLOW OF MUTATIONS THROUGH THE PIPELINE

Instruction Total Kill #1 Same Kill #2 Left Time (s)
abs.f32 70 65 3 0 2 1.41 ± 0.05
add.rm.ftz.sat.f32 167 143 2 21 1 2.49 ± 0.13
add.rn.f32 24 23 0 0 1 0.72 ± 0.02
add.sat.f32 128 125 1 0 2 1.86 ± 0.08
set.eq.ftz.s32.f32 302 229 66 2 5 4.23 ± 0.22
set.ge.f32.f32 333 233 79 2 19 4.75 ± 0.04
set.gt.s32.f32 212 139 66 2 5 3.27 ± 0.18
set.gt.u32.f32 212 139 66 2 5 3.25 ± 0.15
setp.ge.f32 378 290 76 2 10 5.18 ± 0.16
sqrt.rm.f32 245 127 0 11 107 3.50 ± 0.16
sub.rn.ftz.sat.f32 167 143 2 21 1 2.65 ± 0.10
sub.rz.ftz.sat.f32 167 143 2 21 1 2.56 ± 0.02

TABLE III. EQUIVALENCE CHECKER TEST GENERATION

Instruction Generated Unique Total Time (s)
abs.f32 2 2 10 7.59 ± 0.09
add.rm.ftz.sat.f32 22 12 76 44.42 ± 0.38
add.rn.f32 1 1 65 4.02 ± 0.04
add.sat.f32 2 2 66 13.81 ± 0.08
set.eq.ftz.s32.f32 7 6 70 46.82 ± 0.43
set.ge.f32.f32 21 11 75 78.10 ± 0.38
set.gt.s32.f32 7 6 70 47.21 ± 0.28
set.gt.u32.f32 7 3 67 46.48 ± 0.42
setp.ge.f32 12 8 72 61.01 ± 0.41
sqrt.rm.f32 118 24 32 217.67 ± 1.72
sub.rn.ftz.sat.f32 22 12 76 43.97 ± 0.50
sub.rz.ftz.sat.f32 22 12 76 44.15 ± 0.40

low when an existing test suite is used. Generating a test suite
from scratch (RQ8) is possible but consumes more time. The
results for the RQ1–RQ7 are summarized in Table II and in
Table III. Results for RQ8 are presented later in Table IV.

A. RQ1: Generating Mutants

The Total and Kill #1 columns of Table II show the number
of mutants generated for an instruction and the number of those
mutants killed in the first round by our existing test suite.
This number also includes mutants that failed to compile or
did not execute to completion, though the fraction of mutants
killed by the test suite is always above 75%, except for
sqrt.rm.f32 where only 58% of mutants were detected
by the test suite. Clearly, the number of mutants is related to
syntactic complexity of the original program (not evaluated
here) – the abs.f32 instruction is mostly a single call to the
fabsf function, whereas all the others are more complicated.
The stratified sampling-based test suite does a remarkable job
of eliminating a majority of mutants despite being based only
on input types and arity.

B. RQ2: Equivalence Checker Effectiveness

The Kill #2 column of Table II shows the number of
mutants that escaped the original test suite, but were killed by
a second round of testing when the test suite was augmented
by the new inputs produced by the equivalence checker. These
mutants were detected as being semantically different from the
original program and the counter-examples generated should
be enough to detect them. While this is indeed the case for 8 of
the 11 instructions whose mutants survived, three instructions –
abs.f32, add.rn.f32, and add.sat.f32 – had mutants
that survived the second round of testing as well. Indeed, to our
great surprise, there were always mutants that were detected
by the equivalence checker to be different, but which always
evaded detection during testing. We investigate these in more
detail in our discussion of RQ3.

5

Table III shows the results of input generation by the
equivalence checker. While the Generated column shows the
number of new inputs generated, a deduplication pass based
on string equality results in far fewer Unique inputs being
added to the test suite resulting in a final test suite containing
Total inputs. This suggests that many mutants themselves are
semantically identical to each other and this similarity could
be exploited to reduce the cost of equivalence checking. For
example, equivalence checking could be run only on a random
sample of mutants that survived a round of testing. The inputs
generated could be used to weed out other mutants in a
substantially cheaper “mini-round” of testing to save on the
cost of equivalence checking.

C. RQ3: Mutants that Evade Tests

The Left column in Table II represents the mutants that
survive two rounds of testing, with the second round containing
the inputs generated by the equivalence checker. This is
logically possible but unexpected.1 This could be when the
equivalence checker flags a mutant as being non-equivalent
when it is actually equivalent. This is benign and apparent, but
can complicate analysis. But another reason for this happening
is the presence of non-determinism in the test. However, all
our instructions have deterministic behaviour. Nevertheless,
we find that the mutation generation process introduces non-
determinism in subtle ways by generating code that relies on
undefined behaviour.

An excerpt from abs.f32 shows how a read from an
uninitialized variable is introduced into abs.f32 when an
assignment is changed to +=:

f l o a t tmp ds t ;
tmp ds t += f a b s f (s r c) ;

This mutation will go undetected if tmp_dst contains the
value 0.0 or if the compiler optimizes the undefined read away.
The latter is the case on our test system.

Although sqrt.rm.f32 contains a large number of
mutants that evade both rounds of testing, the reason is
that it uses the C library sqrtf function. CBMC uses its
own built-in implementation that is known to produce non-
deterministic results when the input is a subnormal because
IEEE subnormals have the unusual property that two numbers
can be squared to obtain them. The current implementation
returns one of these numbers non-deterministically resulting
in spurious equivalence failures. Although a path to a possible
fix is known [16], it has not been implemented as of writing.

The set.ge.u32.f32 instruction contains a different
and more complicated instance, where the comparison:

p red2 = (! (i s n a n (s r c 1) | | i s n a n (s r c 2)))
&& (s r c 1 >= s r c 2) ;

is mutated to:

1The dual is when a mutant evades the equivalence checker but would be
caught by a test. This indicates a soundness bug in the equivalence checker.
This can be checked by asking for a proof of equivalence for each entry in
the Same column of Table II and verifying the proof. This is a process that
can be automated but isn’t in our work.

pred2 = (! (i s n a n (s r c 1) % i s n a n (s r c 2))) &&
(s r c 1 >= s r c 2) ;

CBMC recognizes that when both src1 and src2 are not
not-a-number (NaN), the remainder operation will fail with a
divide by zero and it generates two normal numbers as inputs
to provoke this behaviour. Unfortunately, when compiling the
test at level -O3, the gcc 7.5.0 compiler decides to completely
remove the check (which is undefined if isnan(src2) ==
0) relying instead on the x86 SSE ucomiss instruction to
detect NaN, so no floating point exception for divide-by-zero
is generated and the code executes normally to produce the
same result as the oracle. Now, the C99 >= operator should
raise a floating-point exception when one of the operands is a
NaN, but the ucomiss instruction will only do so if it is a
signaling NaN. Unfortunately, our test suite does not contain
a signaling NaN and CBMC is unaware of x86 semantics. The
clang compiler does not have this “feature” and the test fails
as expected.

The compile-time exploitation of undefined behaviour
means that some bugs will slip through testing non-
deterministically depending on the compile-time environment.
Thus, while CBMC can flag undefined behaviour, an imple-
mentation may or may not manifest the undefined behaviour.
A suggestion from a reviewer, which we plan to adopt, is
to instrument the tests using undefined-behaviour sanitizers.
This would increase the chances that the compiled version will
detect the same undefined behaviours as CBMC.

Equivalence checking could be performed at the assembly-
language level, which would detect this program as equivalent
to the original except for signaling NaNs and hence produce a
signaling NaN as input. Model checkers for x86 exist including
those with support for SSE instructions [2], but we do not plan
to explore them in this work.

D. RQ4: Syntactic Differences, Semantic Equivalence

Equivalence checking provides insights into the limitations
of mutation generators. The Same column in Table II shows
that, for some instructions, the majority of mutants that survive
the first round of tests are those that are equivalent to the
original program. Our limited survey of these programs shows
this is because the effect of the mutations is masked either
statically or dynamically. Some of these reasons are described
below, in no particular order.

a) Dead Code: Many mutations like the one introduced
below in abs.f32 are dead code and will never execute.

tmp ds t = f a b s f (s r c 1) ;
d s t = ((tmp ds t) < 0 ? k i l l (g e t p i d () , 9)

: (tmp ds t)) ;

In the above code, the assignment is replaced by a ternary
operator, but the condition can never be true because tmp_dst
is the output of fabsf.

b) Semantic Equivalence: In contrast, mutations like
fabsf(-src1) will execute, but the semantics of fabsf
guarantee that the output will remain unchanged. Although
the ternary operator replacement is hard to reason about
syntactically, fabsf can be detected syntactically and the
negation of its operands potentially skipped.

6

c) Near Semantic Equivalence: Some mutations are
nearly equivalent to the original code, so there’s very little
chance they’ll change the behaviour of the program. Consider
this mutated code from the semantics of set.eq.u32.f32
described previously:

p red2 = (! (i s n a n (s r c 1) << i s n a n (s r c 2)))
&& (s r c 1 >= s r c 2) ;

The mutation has the || replaced with <<. However, for
boolean 0–1 inputs and outputs, << agrees with || 75% of
the time, disagreeing only for 0 << 1. The original program
would store 0 in pred2 for this case, and that’s what happens
here as well, masking the effect of the mutation. This suggests
that semantic equivalence should be thought of as a continuum
rather than a binary value to drive the search for mutations with
a higher probability of changing behaviour.

E. RQ5: Pipeline Costs

The Time column in Table II contains the time it takes
for mutation generation and mutation testing per instruction.
The testing of each mutant runs in parallel. The time includes
compilation, running, and checking of the outputs. Clearly,
mutation generation and testing is not very expensive for these
small programs.

Equivalence checking (Table III) is more expensive. Even
running in parallel, the throughput is only 1 mutant every few
seconds. The overall times are still relatively small, though.
The most expensive checks take just a little more than a minute
of wallclock time. To scale to larger instruction sets, however,
the technique described at the end of Section V-B will probably
need to be used.

F. RQ6: Applicability

The instructions chosen for our preliminary tests span
arithmetic, logic, and elementary math on floating point inputs.
We plan to extend our pipeline to the other 4,085 instructions
that span types from 8-bit integers to 64-bit integers and 64-bit
floating point numbers as well. Nothing in our pipeline would
restrict its applicability, however we suspect reasoning about
bit-level instructions might be expensive.

G. RQ7: Evaluating Alternatives

We would like to evaluate the effectiveness of the generated
test suite on mutations generated by Mull [10]. This could
be coupled to use LLBMC [17], a bounded model checker
for LLVM IR to perform equivalence checks on Mull output.
LLBMC does not support floating-point instructions and we
were unable to obtain it from its website. Alternatively, we can
use SeaHorn [18] to check equivalence, though the integration
with Mull will need to be worked out.

H. RQ8: Test Suite Generation from Scratch

Table IV shows the time taken to produce a test suite
for each program from scratch. In this case, all mutants are
sent to the equivalence checker for verification. Predictably,
the time now taken is much higher, however there is no
particular pattern that is evident. In contrast, stratified sampling

TABLE IV. EQUIVALENCE CHECKER TEST GENERATION FROM
SCRATCH

Instruction Generated Unique Time (s)
abs.f32 67 16 123.40 ± 0.31
add.rm.ftz.sat.f32 165 93 294.08 ± 0.86
add.rn.f32 24 14 48.18 ± 0.30
add.sat.f32 127 57 222.40 ± 1.09
set.eq.ftz.s32.f32 218 83 358.23 ± 2.16
set.ge.f32.f32 232 93 394.51 ± 1.31
set.gt.s32.f32 128 61 269.86 ± 0.56
set.gt.u32.f32 128 54 276.26 ± 0.74
setp.ge.f32 260 83 443.78 ± 1.84
sqrt.rm.f32 245 60 425.83 ± 1.64
sub.rn.ftz.sat.f32 165 91 291.80 ± 1.82
sub.rz.ftz.sat.f32 165 92 291.29 ± 1.74

takes milliseconds to produce inputs that can be reused across
programs.

The total number of inputs per instruction is solely the
Unique number of inputs. As expected, these inputs kill the
same number of mutants as the sum of Kill #1 and Kill #2
from Table II. However, in nearly every case, the number of
inputs is much greater than those listed in Table III. Only
add.rn.f32 requires significantly fewer inputs to kill all
mutants than stratified sampling. Other instructions that have
fewer inputs are add.sat.f32, set.gt.s32.f32 and
set.gt.u32.f32.

Although the costs for equivalence checking could be
lowered by some form of deduplication before performing the
equivalence check, we suspect augmenting a good test suite is
more cost effective than generating inputs from scratch.

Apart from cost, this method of test suite generation is
sensitive to a particular mutation engine. This sensitivity can
be evaluated by using the generated test suite on mutations
generated by an alternative mutation engine.

I. RQ9: Comparison to Fuzzing

As of writing, our current infrastructure cannot substitute
a fuzzer for an equivalence checker. However, to evaluate
feasibility, we instrumented the example in Listing 2 and ran
it using libFuzzer (clang 10 and 12). CBMC takes around 2s
to detect a counter example. However, libFuzzer is unable to
generate inputs that kill the mutant even when given more
time. We tried input generation strategies that ranged from
1.1M executions/s (default mutator) to 300K exec/s using a
prototype stratified-sampling-based mutator that we continue
to refine. Nevertheless, we hope to confer with conference
attendees to obtain an experiment setup that will generate a
useful comparison for the final revision. As an aside, before
this experiment, we did not appreciate the simplicity of the
interface offered by equivalence checkers.

VI. RELATED WORK

Hierons et al. [19] surveys a number of techniques that use
formal specifications in the service of testing. Using formal
instruction set semantics to generate test cases is a form of
model-based test generation. As semantics for instructions are
usually embedded in instruction set simulators, past work on
testing these simulators [20, 21, 22, 23, 24] highlight the main
approaches used.

7

Instructions for the x86 instruction set are encoded as
a constraint-satisfaction problem to generate test inputs for
each path [24]. The work eschews SAT solvers because CSP
problems are easier to encode. DeMilli and Offutt [25] explores
how mutations can be associated with constraints that can then
be solved to generate test inputs.

Martignoni et al. [23] use randomized testing by generating
a stream of random bytes and testing the sequence on an
actual physical CPU to identify both instructions and inputs
randomly. Their method generates inputs randomly but is
essentially a form of differential testing.

Specifications for Intel CPUs are mined from their manuals
in [22] and used to construct test abstractions. These are
instantiated with “boundary” values based on the intuition that
boundary values lead to most errors.

Wagstaff et al. [20] instrument the executable specification
of the ISA used in the instruction set simulator to obtain
path coverage. This information is then used to construct path
constraints that are solved using CVC4 to obtain test inputs
that exercise rarely-used paths.

Coverage-guided fuzzing is used to construct test inputs in
[21] where mutation is used to increase code coverage in an
instruction set simulator. In constrast to these works, we mutate
a stand-alone semantics which is not embedded in a simulator.
We mutate the semantics to deliberately introduce bugs and use
equivalence checking to surface inputs that trigger those bugs.
Coverage-based techniques would complement our method.

In a manner similar to our goal of using mutation testing to
add more tests, SpecTest [26] monitors the executable model of
a language extracted from its semantics to obtain coverage of
small step semantics that are used by test programs. These test
programs are then mutated to increase coverage of language
semantics by injecting program constructs that correspond to
unexercised semantics. Their mutation technique could be used
in our work to develop a richer set of bugs.

Mutation-based testing tools [9, 10] have traditionally
checked if a test suite is adequate to detect randomly inserted
bugs. It is usually outside the scope of mutation testing tools
to generate test inputs. But some methods have generated tests
by observing executions for state differences of (Java) objects
and then constructing assertions to detect these differences on
this state [27]. Values are constructed randomly whereas we
rely on counter-example generation using a model checker.

Zhang et al. [28] drive dynamic symbolic execution to
trigger mutation-detecting assertions that were introduced at
the same time as the mutations, allowing inputs to be gen-
erated. In our method, the equivalence checker also operates
symbolically but is highly decoupled from the mutation engine,
and does not need to introduce additional assertions.

Another method to generate inputs that detect differences
is through the use of differential symbolic execution [29]. In
this work, Java programs are executed symbolically to generate
(abstract) bounded execution summaries that are then checked
for equivalence using CVC3. The simplicity of instruction set
semantics allows us to avoid the use of summaries.

VII. CONCLUSION

We have presented an automatic test generation pipeline for
instruction set semantics. The pipeline uses mutation testing to
introduce bugs and equivalence checking to construct inputs
that trigger those bugs. The method can be used to augment
both an existing test suite and construct a test suite. How-
ever, our preliminary evaluation on 12 PTX instructions finds
that the pipeline is cost-effective only for augmentation. We
also find mutation testing can introduce undefined behaviour
leading to non-determinism that can complicate testing of C
implementations. We are currently limited to particular tools to
maximize the number of instruction set semantics supported.
Good support for floating point would allow us to use other
equivalence checkers and mutation testing tools.

Coupling equivalence checking to a mutation testing frame-
work provides a promising method to improve the quality of
the mutation generation. As we observe in our evaluation, the
ability to detect semantically equivalent mutants also provides
an objective metric for mutation tools. Our notion of near
semantic equivalence can be used to characterize the quality
of individual mutations.

REFERENCES

[1] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid,
K. E. Gray, R. M. Norton, P. Mundkur, M. Wassell,
J. French, C. Pulte, S. Flur, I. Stark, N. Krishnaswami,
and P. Sewell, “ISA semantics for ARMv8-a, RISC-
v, and CHERI-MIPS,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 1–31,
Jan. 2019. [Online]. Available: https://dl.acm.org/doi/10.
1145/3290384

[2] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and
G. Roşu, “A Complete Formal Semantics of x86-64
User-level Instruction Set Architecture,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2019.
New York, NY, USA: ACM, 2019, pp. 1133–1148.
[Online]. Available: http://doi.acm.org/10.1145/3314221.
3314601

[3] D. Carrington and P. Stocks, “A tale of two paradigms:
Formal methods and software testing,” in Z User Work-
shop, Cambridge 1994, ser. Workshops in Computing,
J. P. Bowen and J. A. Hall, Eds. London: Springer,
1994, pp. 51–68.

[4] N. Corporation, PTX: Parallel Thread Execution ISA,
7th ed., 2021.

[5] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Lit-
mus: Running Tests against Hardware,” in Tools and
Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, P. A. Abdulla
and K. R. M. Leino, Eds. Springer Berlin Heidelberg,
2011, pp. 41–44.

[6] D. Kroening and M. Tautschnig, “Cbmc – c bounded
model checker,” in Tools and Algorithms for the Con-
struction and Analysis of Systems, E. Ábrahám and
K. Havelund, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 389–391.

[7] A. Armstrong, T. Bauereiss, B. Campbell, K. E. Gray,
R. Norton-Wright, C. Pulte, S. Flur, and P. Sewell,
“The Sail instruction-set semantics specification

8

language,” p. 26, 2021. [Online]. Available: https://raw.
githubusercontent.com/rems-project/sail/sail2/manual.pdf

[8] T. F. Serbanuta, A. Arusoaie, D. Lazar, C. Ellison,
D. Lucanu, and G. Rosu, “The K Primer (version 3.3),”
Electronic Notes in Theoretical Computer Science, vol.
304, pp. 57–80, Jun. 2014. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/S1571066114000395

[9] D. L. Phan, Y. Kim, and M. Kim, “Music: Mutation
analysis tool with high configurability and extensibility,”
in 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW),
2018, pp. 40–46.

[10] A. Denisov and S. Pankevich, “Mull it over: Mutation
testing based on LLVM,” 2018 IEEE International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Apr 2018. [Online].
Available: http://dx.doi.org/10.1109/ICSTW.2018.00024

[11] P. Cousot and R. Cousot, “Abstract interpretation:
a unified lattice model for static analysis of
programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming
languages - POPL ’77. Los Angeles, California:
ACM Press, 1977, pp. 238–252. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=512950.512973

[12] “The CPROVER Manual: Floating point.” [On-
line]. Available: http://www.cprover.org/cprover-manual/
modeling/floating-point/

[13] M. Brain, F. Schanda, and Y. Sun, “Building Better
Bit-Blasting for Floating-Point Problems,” in Tools and
Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, T. Vojnar and
L. Zhang, Eds. Cham: Springer International Publishing,
2019, pp. 79–98.

[14] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for
Complex Systems Programs,” OSDI, p. 16, 2008.

[15] LLVM Project, “libFuzzer – a library for coverage-
guided fuzz testing. – LLVM 15.0.0git documentation.”
[Online]. Available: https://llvm.org/docs/LibFuzzer.html

[16] M. Brain, “sqrtf appears to be non-deterministic
and throwing spurious verification failures - Issue
#6563 - diffblue/cbmc.” [Online]. Available: https:
//github.com/diffblue/cbmc/issues/6563

[17] F. Merz, S. Falke, and C. Sinz, “LLBMC: Bounded
Model Checking of C and C++ Programs Using a
Compiler IR,” in Verified Software: Theories, Tools,
Experiments, R. Joshi, P. Müller, and A. Podelski,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, vol. 7152, pp. 146–161, series Title: Lecture
Notes in Computer Science. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-27705-4 12

[18] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas,
“The SeaHorn Verification Framework,” in Computer
Aided Verification, D. Kroening and C. S. Păsăreanu,
Eds. Cham: Springer International Publishing, 2015,
vol. 9206, pp. 343–361, series Title: Lecture Notes
in Computer Science. [Online]. Available: http://link.
springer.com/10.1007/978-3-319-21690-4 20

[19] R. M. Hierons, K. Bogdanov, J. P. Bowen,
R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe,
M. Harman, K. Kapoor, P. Krause, G. Lüttgen,

A. J. H. Simons, S. Vilkomir, M. R. Woodward,
and H. Zedan, “Using formal specifications to
support testing,” ACM Computing Surveys, vol. 41,
no. 2, pp. 1–76, Feb. 2009. [Online]. Available:
https://dl.acm.org/doi/10.1145/1459352.1459354

[20] H. Wagstaff, T. Spink, and B. Franke, “Automated ISA
branch coverage analysis and test case generation for
retargetable instruction set simulators,” in Proceedings
of the 2014 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, ser.
CASES ’14. New York, NY, USA: Association for
Computing Machinery, Oct. 2014, pp. 1–10. [Online].
Available: https://doi.org/10.1145/2656106.2656113

[21] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Ver-
ifying Instruction Set Simulators using Coverage-guided
Fuzzing*,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), Mar. 2019, pp. 360–365.

[22] W. Ma, A. Forin, and J.-C. Liu, “Rapid prototyping
and compact testing of CPU emulators,” in Proceedings
of 2010 21st IEEE International Symposium on Rapid
System Protyping, Jun. 2010, pp. 1–7.

[23] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi,
“Testing CPU emulators,” in Proceedings of the
eighteenth international symposium on Software testing
and analysis, ser. ISSTA ’09. New York, NY, USA:
Association for Computing Machinery, Jul. 2009, pp.
261–272. [Online]. Available: https://doi.org/10.1145/
1572272.1572303

[24] S. V. Kodakara, D. A. Mathaikutty, A. Dingankar,
S. Shukla, and D. Lilja, “Model Based Test Genera-
tion for Microprocessor Architecture Validation,” in 20th
International Conference on VLSI Design held jointly
with 6th International Conference on Embedded Systems
(VLSID’07), Jan. 2007, pp. 465–472.

[25] R. DeMilli and A. Offutt, “Constraint-based automatic
test data generation,” IEEE Transactions on Software
Engineering, vol. 17, no. 9, pp. 900–910, Sep. 1991.

[26] R. Schumi and J. Sun, “SpecTest: Specification-Based
Compiler Testing,” in Fundamental Approaches to Soft-
ware Engineering, ser. Lecture Notes in Computer Sci-
ence, E. Guerra and M. Stoelinga, Eds. Cham: Springer
International Publishing, 2021, pp. 269–291.

[27] G. Fraser and A. Zeller, “Mutation-Driven Generation of
Unit Tests and Oracles,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 278–292, Mar. 2012.

[28] L. Zhang, T. Xie, L. Zhang, N. Tillmann,
J. de Halleux, and H. Mei, “Test generation
via Dynamic Symbolic Execution for mutation
testing,” in 2010 IEEE International Conference
on Software Maintenance. Timisoara, Romania:
IEEE, Sep. 2010, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/document/5609672/

[29] S. Person, M. B. Dwyer, S. Elbaum, and
C. S. Pǎsǎreanu, “Differential symbolic execution,”
in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16. New York,
NY, USA: Association for Computing Machinery,
Nov. 2008, pp. 226–237. [Online]. Available:
https://doi.org/10.1145/1453101.1453131

9

