
Efficient Execution of Graph Algorithms on CPU
with SIMD Extensions

Ruohuang Zheng
Department of Computer Science

University of Rochester
Rochester, New York, USA

rzheng3@ur.rochester.edu

Sreepathi Pai
Department of Computer Science

University of Rochester
Rochester, New York, USA

sree@cs.rochester.edu

Abstract—Existing state-of-the-art CPU graph frameworks
take advantage of multiple cores, but not the SIMD capability
within each core. In this work, we retarget an existing GPU
graph algorithm compiler to obtain the first graph framework
that uses SIMD extensions on CPUs to efficiently execute graph
algorithms. We evaluate this compiler on 10 benchmarks and
3 graphs on 3 different CPUs and also compare to the GPU.
Evaluation results show that on a 8-core machine, enabling SIMD
on a naive multi-core implementation achieves an additional 7.48x
speedup, averaged across 10 benchmarks and 3 inputs. Applying
our SIMD-targeted optimizations improves the plain SIMD im-
plementation by 1.67x, outperforming a serial implementation by
12.46x. On average, the optimized multi-core SIMD version also
outperforms the state-of-the-art graph framework, GraphIt, by
1.53x, averaged across 5 (common) benchmarks. SIMD execution
on CPUs closes the gap between the CPU and GPU to 1.76x, but
the CPU virtual memory performs better when graphs are much
bigger than available physical memory.

Index Terms—CPU SIMD, graph algorithms, Intel ISPC

I. INTRODUCTION

Modern CPUs and GPUs are increasingly similar. While
CPUs are not intrinsically SIMD, they commonly support
SIMD execution through the use of SIMD extensions or short
vector instructions. Intel’s recently added AVX512 extensions
enables CPUs to process 16 32-bit integers or floats in one
instruction, which is half the size of an NVIDIA GPU warp.

Until recently, using these CPU SIMD extensions meant
using SIMD intrinsics or relying on compiler autovectoriza-
tion. With the insight, attributed to Tim Foley, that “auto-
vectorization is not a programming model” [1], and that
scalar programming models like CUDA were more suitable
for generating SIMD code, there is now a third alternative for
using the SIMD extensions on CPUs. This programming model,
implemented by the Intel SPMD Compiler [2], and referred
to as ISPC in this work, allows programmers to write mostly
scalar code with some annotations that lead to the generation
of multi-threaded SIMD code. This is both portable and highly
controllable.

While state-of-the-art parallel CPU graph frameworks [3]–
[18] have successfully increased efficiency of running on
multiple cores, they do not make use of SIMD-style execution.
The availability of ISPC allows the use of GPU programming
model paradigms on CPUs. This prompts our work, where we
take a state-of-the-art GPU compiler for graph algorithms – the

IrGL compiler [19] – and retarget it to ISPC. Not only does this
allow us to generate native SIMD versions of graph algorithms,
it also allows us to study the effectiveness of the optimizations
originally developed for GPUs and to directly compare CPUs
and GPUs, as we run the same graph algorithms with the same
optimizations applied on both the devices. Since GPUs now
also support virtual memory, e.g. NVIDIA’s Unified Virtual
Memory (UVM), we can also compare the virtual memory
systems of the CPU and the GPU. This paper makes the
following contributions:

• We present the first framework for SIMD CPU algorithms
based on a recent GPU compiler for graph algorithms.
On average, compared to state-of-the-art CPU graph
frameworks, Ligra, GraphIt, and Galois, the optimized
multi-core SIMD implementation is 3.06x, 1.53x, 1.78x
faster, respectively.

• We show that GPU-oriented optimizations also work for
SIMD on CPUs delivering an additional 1.67x improve-
ment over the naive SIMD implementation.

• We evaluate the effects of different SIMD variants (AVX,
AVX2 and AVX512), finding that wider SIMD extensions
may not always be better.

• Our work enables direct comparison of CPU SIMD and
GPU graph algorithms which shows that the GPU only
outperforms our fastest CPU by 1.52x after use of SIMD.
Furthermore, for large graphs that do not fit in GPU
memory, we find that the GPU’s virtual memory subsystem
can cause dramatic slowdown (more than 5000x) on our
GPU making it totally unusable.

The rest of this paper is organized as follows. Section II
provides necessary background and briefly discusses related
work. Section III discusses the challenges and solutions of
efficiently executing graph algorithms on CPUs in SIMD
fashion. Section IV presents the performance evaluation results
and compares CPUs and GPUs. And finally, Section V
concludes the paper.

II. SIMD GRAPH ALGORITHMS ON CPUS

We describe the challenges in writing SIMD graph algo-
rithms, and introduce the ISPC programming model, and
provide a brief review of related work.

978-1-7281-8613-9/21 © 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

262

A. SIMD Graph Algorithms

Graph algorithms raise significant challenges for SIMD
implementations. Manually writing SIMD code – either via
assembly language or through the use of SIMD intrinsics – is
mechanical, tedious, and ultimately results in code that lacks
portability. If the SIMD instruction set changes then code must
be rewritten. On the x86, which has gone through at least six
different short vector extensions so far – MMX, SSE, SSE2,
AVX, AVX2, and AVX512 – manually targeting SIMD can be
particularly unproductive.

Auto-vectorization, which parallelizes scalar code and gen-
erates SIMD code does not suffer this portability problem.
Although most modern compilers such as GCC and LLVM
support autovectorization, the sparse data structures used by
graph algorithms (e.g. compressed sparse row [CSR]) lead to
heavy use of indirect memory accesses in the code. These
indirect memory accesses and accompanying irregular loop
structures hinder most auto-vectorization algorithms. Recent
work has made considerable progress in tackling sparse data
structures [20]–[22], but these remain unavailable in production
compilers.

GPU SIMD implementations do not have deal with these
problems since they use a mostly scalar, explicitly parallel
programming model. When combined with the GPU’s hardware
support for handling control and memory divergence, this
programming model neither requires use of SIMD intrinsics
nor auto-vectorization support. CPU SIMD instruction sets have
recently added similar hardware functionality. The Intel Haswell
architecture’s AVX2 instruction set includes dedicated gather
load instructions. The AVX512 instruction set, introduced in
the Xeon Phi x200 and Skylake-X server CPUs, added eight
opmask registers that allows individual SIMD lanes to be
masked (i.e. predicated) for most instructions simplifying the
handling of control divergence. It also added dedicated scatter
store instructions. This leads to a new model, implicit SPMD,
for SIMD algorithms.

B. Implicit SPMD

Traditionally, data-parallel programs that use multi-process
or multi-threaded execution can be written in the single program
multiple data (SPMD) style. In SPMD, parallel tasks are
created to independently execute a single program, with data
decomposition [23] used to distribute data to each parallel task.
SIMD, on the other hand, operates at the instruction level and
therefore each SIMD “task” belonging to the same instruction
executes in lockstep. GPU programming models, like CUDA
and OpenCL, showed that it is possible to write SIMD programs
that execute in a SPMD fashion while ostensibly writing scalar
code.

The Intel Implicit SPMD Program Compiler (ISPC) [2] is
a compiler for a C-like language that implements a similar
SPMD+SIMD programming model for CPUs. SPMD execution
is achieved using multiple threads, while SIMD execution is
obtained by using the SIMD extensions on CPUs. Since the
CPU also supports purely scalar execution, unlike most GPUs,
ISPC differs from GPU programming models and natively

TABLE I
MAP OF CUDA TO ISPC CONSTRUCTS

CUDA construct ISPC construct Executed on CPU by
CUDA Thread Program Instance SIMD Lane

Warp ISPC Task OS Thread
Thread Block N/A N/A

1 // example.ispc
2 task void reduction(uniform int * uniform array,
3 uniform int size, uniform int * uniform out) {
4 uniform int size_per_task = size / taskCount;
5 uniform int start = taskIndex * size_per_task;
6 int sum = 0; // Defaults to varying type
7 foreach (i = 0 ... size_per_task)
8 sum += array[start + i];
9 atomic_add_global(out, reduce_add(sum));

10 }
11 export void launch_reduction(uniform int num_task,
12 uniform int * uniform array, uniform int size,
13 uniform int * uniform out)
14 { launch[count] reduction(array, size, out); }

16 // example.cc
17 int main(int argc, char *argv[]) {
18 int sum = 0;
19 int *array = new int[4096];
20 // ... Init the array
21 launch_reduction(16, array, 4096, &sum);
22 cout << "Sum: " << sum << endl;
23 }

Listing 1. A simple ISPC program

supports scalar execution. In contrast, efficient scalar execution
of GPU programming models usually requires sophisticated
analyses [24], [25]. The primary challenge for ISPC is to
achieve SIMD execution from a primarily SPMD code, while
maintaining the illusion that multiple SIMD lanes are executing
independently.

ISPC programs are explicitly parallel. The basic building
block is a program instance that is mapped to SIMD lanes.
Multiple program instances form an ISPC task which is usually
executed by an OS thread. Table I links these to their CUDA
counterparts, note there is no ISPC equivalent for a CUDA
thread block.

Listing 1 sketches a simple ISPC program that calculates
the sum of an array of integers. It is spread across two source
files: a main program written in C/C++ and an ISPC source
file containing the computation kernels. The ISPC kernels are
started by calls from the main program, similar to calling
a regular function. To take advantage of multi-threading (in
addition to SIMD), ISPC also supports launching multiple tasks
through the launch statement. The launch statement invokes
an underlying tasking system that creates multiple OS threads
on to which tasks are mapped.

The ISPC language used for writing kernels is C-like, except
that all variables are treated as vectors and implicitly declared
as varying – meaning each program instance sees a different
value for the variable. Thus, they behave like vectors and
naturally, they will be handled by SIMD instructions. Scalar
variables, which are shared by all program instances in the

263

same task, are declared as uniform.1 In Listing 1, all arguments
to the ISPC kernels are marked as uniform. The range of array
indices that will be summed by each task is then calculated
by splitting up the total work among all the tasks launched
(size_per_task), and using that to identify the start of the
task’s block of work. The four built-in variables – programIndex
(identifies program instance), programCount (SIMD width),
taskIndex (task identifier), and taskCount (total tasks launched)
– can be used by ISPC tasks to carve out work using data
decomposition.

The variable sum is varying, and is local to each program
instance. The foreach statement is used to indicate a parallel
loop. In this case, the loop generates vector instructions that
add each vector element of sum to a corresponding element of
array. As all accesses to array are consecutive, a standard
vector load can be used. However, in the general case, a gather
instruction can be generated to load values from array. Once
the foreach loop has completed, the ISPC library function
reduce add is used to reduce the contents of the vector sum
into a scalar, which is then added to the scalar variable out
using an ISPC library function atomic add global to perform
the addition atomically across all executing tasks.

Although a ISPC-like programming model could have been
built before, several recent hardware features have made a
compiler viable. The primary causes of “divergence” in SIMD
programs are memory accesses to non-consecutive locations and
divergent branches. Hardware support for gathers and scatters
deals with the former, whereas support for predication/masking
allows dealing with the latter. Of course, ISPC can always
generate purely scalar code where hardware support is missing.

C. Related Work

1) SIMD Graph Algorithms on CPUs: Vectorized garbage
collection [26] used a vectorized breadth-first search (BFS)-
based garbage collection algorithm on the Cray-2. A more
recent proposal [27] describes a set of graph processing APIs
that express SIMD parallelism on Intel Xeon Phi. Another
proposal [28] explores manually vectorizing and optimizing
BFS on Phi, achieving about 1.25x speedup over the non-SIMD
implementation. In addition, AVX intrinsic accelerated set
intersection operation [29] was proposed for a number of graph
algorithms, including triangle counting, clique detection, and
subgraph matching, achieving 3.6x, 12,7x, and 3.3x speedup,
respectively. A variety of work also discuss vectorized set
intersection operations [30]–[32].

2) Non-SIMD Graph Algorithms on CPUs: A large number
of graph processing frameworks and systems have been
proposed for CPUs [3]–[18], [33]–[38], which focus on
thread-level parallelism, rather than SIMD. Notably, Ligra [3],
Ligra+ [39], Julienne [40], and the most recent GBBS [41]
is a line of state-of-the-art work that resembles one type of
graph frameworks – C++ template libraries. Galois [42] is
also a state-of-the-art graph library implemented in C++. In

1For pointers, the pointer variable itself and the data it points to can be
either uniform or varying.

IrGL
AST

Nested
Parallelization

Cooperative
Conversion

Iteration
Outlining

CUDA
Sources

NVIDIA
GPU

CUDA
Scheduler

ISPC
Scheduler

Throughput Optimizations

ISPC
Fibers

ISPC
Backend

CUDA
Backend

ISPC
Sources

nvcc

SSE/AVX
x86 CPU

gcc
ispc

NEON
ARM CPU

O
rig

in
al

 I
rG

L
E

G
A

C
S

Fig. 1. IrGL and EGACS workflow

particular, it has a large collection of graph problems and a
variety of algorithms for each problem. GraphIt [4], [43], [44]
is another line of state-of-the-art work that resembles another
type of graph frameworks – domain-specific language plus
an optimizing compiler. It also allows each benchmark to be
fine-tuned by “schedules” supplied by the programmer.

3) Graph Algorithms on GPUs and Accelerators: A large
number of graph systems have been proposed for GPUs and
accelerators [45]–[64]. They are available in libraries and
domain-specific language plus compilers as well. In particular,
our paper extends the IrGL compiler for irregular graph
algorithms on GPUs [19] to CPUs.

Figure 1 highlights the contribution of this work, which
we term EGACS (Efficient Graph Algorithms on CPU SIMD).
Shaded boxes represent the new components added to the IrGL
compiler, and dashed boxes represent components that are
already in IrGL, but modified to incorporate our new ISPC
backend. Our work keeps the IrGL DSL frontend, but adds a
new backend for Intel ISPC, allowing IrGL programs to be
executed on CPUs using SIMD extensions. Graph benchmarks
and APIs are also from GPU IrGL.

The use of the ISPC compiler allows our work to automat-
ically support all targets that Intel ISPC supports, including
SSE and AVX on x86, and NEON on both 32-bit and 64-bit
ARM processors. However, in this work, we focus only on
AVX extensions on x86 processors, and leave evaluation of
ARM NEON to future work.

III. CPU SIMD CHALLENGES AND SOLUTIONS

In this section, we examine several performance issues in
efficient utilization of SIMD units on CPUs, and show that
some of them can be tackled by adapting optimizations first
described for the GPU while others require new optimizations.

A. Task Launching

Many graph algorithms are iterative, re-executing a compu-
tation a large number of times until convergence. For BFS, the
minimum number of iterations is the diameter of the graph,
which for some graphs can be thousands of iterations.

In ISPC, each iteration requires tasks to be launched,
equivalent to launching kernels on GPUs. While spawning CPU
threads or assigning computation tasks to worker threads is not
as expensive as launching GPU kernels, it is not free either.
Tasks are an ISPC construct, and have different implementations
that can be selected at compile time. On Linux, ISPC supports
a standard pthread-based [65] task system with 3-D task
launching, a simplified version called “pthread fs” that only

264

TABLE II
AVERAGE TIME PER LAUNCH IN MICROSECONDS

Machine pthread pthread fs TBB TBB for OpenMP Cilk
Intel 62.56 72.14 4.74 5.68 8.85 5.91
AMD 151.21 69.62 32.87 14.47 18.35 8.13

TABLE III
EXECUTION TIME IN MILLISECONDS OF BFS-WL WITH AND WITHOUT

OPTIMIZATION, COMPILED WITH DIFFERENT TASK SYSTEMSa

Config pthread pthread fs TBB TBB for OpenMP Cilk
Unopt 1215.44 1058.27 714.48 643.84 437.26 739.02

IO 261.05 276.00 263.06 260.45 259.06 264.71
aUsing USA-Road graph. Data collected on Intel machine.

supports 1-D task launching, as well as task systems based
on Cilk [66], OpenMP [67], and Intel Thread Building Blocks
(TBB) [68].

To characterize the overheads of task launches in ISPC
using different task systems, we execute a microbenchmark
that only launches tasks that do nothing (i.e. “empty” tasks).
Table II compares the time per launch averaged over 10000
continuous launches for all supported task systems. For this test,
the number of tasks launched is equal to the total number of
hardware threads on the machine. We observe that the pthread-
based task system shows the highest launch time, while Cilk
shows the lowest launch time.

Table III shows the results of repeating this experiment with a
real benchmark, BFS-WL on USA-road graph, with and without
the optimization called Iteration Outlining (IO, described later)
that removes task launching overhead. These results show
that in real programs, OpenMP has the lowest overhead but all
systems still impose significant overheads. We then observe that
optimization successfully removes that overhead, making the
total execution time nearly the same regardless of task system.
Because task launching is on the critical path, lowering its
overhead also improves scalability – BFS-WL with USA-Road
with 16 tasks on a 8-core SMT-enabled machine shows a 4.59x
speedup only when the optimization is applied, compared to
no speedup over a single-thread SIMD version.

To tackle both launch overhead and lack of scalability, we
retarget the IrGL optimization called Iteration Outlining (IO)
that reduces the number of task launches to one. Listing 2
illustrates how this optimization is applied to BFS-WL in ISPC.
In the input IrGL code, the iterative loops are represented by a
language construct called a Pipe [19]. The default translation
of Pipe results in a C++ loop that launches tasks for each
iteration. To reduce the number of task launches, however, we
transform the iterative loop so that it is “outlined” to ISPC
code. The transformed code launches the ISPC bfs loop kernel,
which in turn uses a loop to call the original bfs kernel. There
is only one task launch in this case. To maintain the original
semantics of task launches, we insert barriers after each original
kernel invocation.

B. Improving SIMD Lane Utilization

Many graph algorithms contain nested loops, the outer of
which iterates over all nodes of a graph, while the inner loop

1 int main() {
2 // ... Init
3 LEVEL = 1;
4 barrier_t bar(num_tasks);
5 launch_bfs(num_tasks, graph, LEVEL, pipe, &bar);

7 // W/O optimization, multiple launches required
8 // while (pipe.in_wl->nitems()) {
9 // launch_bfs(num_tasks, graph, &LEVEL, pipe);

10 // ... Worklist management code
11 //}
12 }
13 task void bfs_loop(...) {
14 while (pipe.in_wl->nitems()) {
15 bfs(graph, *LEVEL, &pipe);
16 barrier_wait(bar);
17 LEVEL++;
18 // ... Worklist management code
19 }
20 barrier_wait(bar);
21 // ... Cleanup
22 }
23 export void launch_bfs(...) {
24 launch[num_tasks]
25 bfs_loop(graph, LEVEL, pipe, bar);
26 }

Listing 2. BFS-WL launches only once with optimization

1 uniform int wl_end = in_wl->count;
2 for (int wli = tid; wli < wl_end; wli += nthreads) {
3 int node; // Outer
4 bool pop = pipe.in_wl->pop(wli, node);
5 int start = graph.getFirstEdge(node);
6 int end = graph.getFirstEdge(node + 1);
7 for (int edge = start; edge < end; edge++) {
8 int dst = graph.getAbsDst(edge); // Inner
9 if (graph.node_data[dst] == INF) {

10 graph.node_data[dst] = LEVEL; // IfPush
11 pipe.out_wl->push(dst);
12 }
13 }
14 }

Listing 3. Generated BFS-WL code snippet (modified for readability)

iterates over edges of a particular node (e.g. Listing 3). In ISPC,
each outer loop iteration gets mapped to an ISPC program
instance (i.e. a SIMD lane). All iterations of the inner loop
are then executed by a single SIMD lane. So unlike regular
algorithms like dense matrix multiply, the amount of SIMD
parallelism available is dynamic and depends on the input
graph. This can lead to SIMD lane underutilization since the
number of inner loop iterations are usually different across
SIMD lanes.

Table IV shows that SIMD lane utilization when executing
the inner loop (Line 8 in Listing 3) is around 64% for USA-
Road graph and 32% for RMAT22 graph.The USA-Road graph
has low average degree and is relatively uniform, whereas
RMAT22 has higher average degree and is highly skewed.
After applying optimizations detailed later in this section, lane
utilization increases to 82% and 84% for the inner loop for
the two inputs respectively. We also observe that applying
these optimizations reduces the number of dynamic instructions
significantly (e.g. 18x for RMAT22) despite the additional code
for scheduling. These primary goal of these optimizations is
to increase the amount of work per program instance (Fibers)
and address load imbalance (Nested Parallelism/NP).

265

TABLE IV
SIMD LANE UTILIZATION

Input Config Num. of Lane Utilization %
Instrs Outer:L3 Inner:L8 IfPush:L10

USA-Road Unopt 564 M 99 62 28
NP+Fibers 547 M 100 82 35

RMAT22 Unopt 259 M 99 32 10
NP+Fibers 145 M 100 84 14

1) Fibers: Unlike CUDA, ISPC has no scheduling construct
corresponding to thread blocks or shared memory. Since
graph algorithms have low arithmetic intensity, we found it
advantageous to emulate thread blocks in ISPC to increase
the amount of work per ISPC program instance. Thread block
emulation is done through fibers, which emulate multiple ISPC
tasks on the same OS thread. We implement this by inserting
additional loops around the actual work loop. The number of
loop iterations determines the number of fibers, and data for
each virtual task is stored in local, per-task arrays. This is
somewhat similar to thread-coarsening in GPU kernels [69].

Fibers enables emulation of CUDA shared memory and
the CUDA thread block level syncthreads barrier. Shared
memory is emulated by placing variables before any of the
fiber loops, thus all fibers have access to that location. The
fiber loops need to be partitioned at each syncthreads [70].

When fibers are enabled, each ISPC task now corresponds
to a CUDA thread block, while the fibers correspond to CUDA
warps. CUDA threads are iterations of the fiber loop, which
we refer to as virtual program instances.

To choose the number of fibers per ISPC task, we must
balance fixed scheduling overheads as well as resource con-
sumption for fiber-specific state arrays. We opt to use a dynamic
calculation:

NumFibersPerTask = MIN(MaxNumFibersPerTask,

NumOfItemsInWL

SIMDWidth×NumOfTasks
)

Here, MaxNumFibersPerTask is the maximum number
of possible fibers per task, set empirically to 256 to limit
resource consumption while maximizing average speedup.
NumOfItemsInWL is the current number of worklist
items. SIMDWidth is 8 for AVX2 or 16 in AVX512.
The NumOfTasks is the number of launched ISPC tasks,
usually the number of hardware threads. Each task computes
NumFibersPerTask before beginning the actual computa-
tion. This way, we only launch one ISPC task per hardware
thread which then iterates over all the work.

2) Nested Parallelism: Nested parallelism (NP) redistributes
inner loop iterations across ISPC program instances to reduce
load imbalance which in turn improves SIMD lane utilization.
Figure 2 illustrates how this redistribution works. Initially,
nodes are assigned to virtual program instances as usual.
Without nested parallelism, the SIMD lane utilization of this
hypothetical 5-lane SIMD machine is quite poor. With nested
parallelism, however, edges (i.e. inner loop iterations) of high-
degree nodes (e.g., B) are distributed across all virtual program

A

a1

B

b1 b2 b32...

E

e1 e2

C

c1 c8...

D

d1 d5...

a1 b1 c1 d1 e1

b2 c2 d2 e2

b3 c3 d3

b4 c4 d4

b5 c5 d5

b6 c6

b32

...

c2 c3 c4

c7 c8

c5

c6

c1

e1 e2a1

d2 d3 d4 d5d1

b1 b2 b3 b4 b5

b32b31

...

Without NP With NP

Fig. 2. Nested parallelism

instances. Medium-degree node edges (C, D) are executed
by real program instances. The edges of the remaining low-
degree nodes (e.g., A, E) are packed using a prefix sum and
redistributed across all program instances. Our compiler inserts
the proper inspector–executor scheduler code to achieve this.
This design closely follows the the CUDA backend, with the
ISPC fiber, task, and fine-grained schedulers mirroring the
CUDA thread block, warp, and fine-grained schedulers.

C. Atomic Operations

Work-efficient graph algorithms use a worklist to track active
nodes in the graph. Since this worklist is updated concurrently
by program instances, the use of atomics is necessary.

Unlike GPUs, the CPU hardware does not yet provide native
vector atomic instructions. However, ISPC provides built-in
atomic functions that can act as vector atomic instructions.
These atomic functions come in local and global variants. The
local atomic functions only provide atomic guarantee within a
single task. Since program instances are executed in lock-step
fashion in a task, these atomic functions are implemented by
a simple loop over all active program instances and do not
require a hardware atomic.

In contrast, the global atomic functions provide atomicity
guarantees across tasks and can be classified into three types
depending on the source and destination operands. For the case
of atomic operations on scalar memory locations with scalar
input value, the translation to hardware is direct. For atomic
vector-to-vector operations, a loop uses hardware scalar atomic
instructions to update each memory location for each active
program instance. The final case involves atomic updates from
a vector value to a scalar location. These are implemented by
first performing a vector reduction on the input vector within
a task to obtain a scalar, and then issuing a scalar atomic
operation to the scalar memory location. Since atomics are
executed serially in hardware, reducing the number of atomics
can improve performance.

To reduce the number of atomics executed, the Cooperative
Conversion optimization transforms code so that multiple
program instances aggregate their worklist pushes locally and

266

F
ib

er
lo

op

Vector store

Count total number of items

 Single scalar atomic add

Lo
op

 o
ve

r
al

l i
te

m
s

Count active lanes

 Scalar atomic add

Vector store

Fig. 3. Task-level (left) and fiber-level (right) cooperative conversion.

TABLE V
NUMBER OF ATOMIC WORKLIST PUSHES, REDUCTIONS IN PARENTHESES

Benchmark Unopt +NP+CC +NP+CC+Fibers
bfs-wl 5613534 4707262 (1.19x) 4707262 (1.19x)
bfs-cx 12414660 3610932 (3.44x) 17371 (714.68x)
bfs-tp 11323019 7823806 (1.45x) 6180474 (1.83x)
bfs-hb 12414660 3610932 (3.44x) 17371 (714.68x)

cc 1653040 1653040 (1.00x) 1653040 (1.00x)
sssp 10197285 8489255 (1.20x) 8489255 (1.20x)
mis 3074720 1600115 (1.92x) 1600115 (1.92x)
pr 58736245 43130914 (1.36x) 44168071 (1.33x)

mst 8240779 6927180 (1.19x) 4570299 (1.80x)

eventually perform one atomic for the aggegrated push. In
the original IrGL GPU compiler, aggregation is performed at
the warp and thread block levels. In the CPU compiler, we
also aggregate atomics unconditionally at the task level across
program instances. This is done by replacing an worklist push
with an aggregate version as shown below:

1 void push_task(uniform WL * uniform wl, int item) {
2 uniform int cnt = popcnt(lanemask());
3 uniform int idx = atomic_add_global(wl->idx, cnt);
4 packed_store_active(&wl->content[idx], item);
5 }

First the ISPC built-in functions popcnt(lanemask()) obtains
the number of pushes by counting the number of active
program instances. Then, the ISPC built-in atomic function
atomic add global reserves space for all pushes using a task
level atomic scalar atomic add global. Lastly, the ISPC built-
in function packed store active takes values to be pushed
from active program instances, packs them, and writes them
to consecutive memory locations in the reserved space.

Since ISPC has no concept corresponding to a CUDA thread
block, we instead implement cooperative conversion on fibers,
illustrated in Figure 3. For some algorithms, total number of
items that get pushed into the worklist can be calculated in
advance. In such case, only one atomic add is required with the
help of fibers. Unlike the GPU, since fibers still belong to the
same ISPC task, lockstep execution is guaranteed permitting
a more efficient implementation of fiber-level cooperative
conversion.

Table V shows how the number of atomic worklist pushes is
reduced after cooperative conversion. We always enable nested
parallelism since it increases the number of active program
instances increasing the effectiveness of cooperative conversion.
Cooperative conversion significantly reduces the number of
atomic pushes over unoptimized for all benchmarks where it
is applicable. Fiber-level aggregation is only applicable in two
benchmarks, bfs-cx and bfs-hb, where the number of atomic
pushes is further reduced by 36.5x for BFS-CX (for a total of
125x).

TABLE VI
AVERAGE 32-BIT LOAD-TO-USE LATENCY IN NANOSECONDS ON L1/L2/L3

HITS

Instr. Intel AMD Phi
Type L1 L2 L3 L1 L2 L3 L1 L2
AVX2 1.02 2.00 5.82 0.97 3.41 3.95 1.81 4.60

AVX512 0.59 0.96 3.10 N/A N/A N/A 0.98 1.99
Scalar1 2.35 8.43 39.5 1.79 5.34 24.96 3.64 15.30
Scalar8 0.30 1.06 5.19 0.26 0.86 3.12 1.06 1.96
Scalar16 0.31 0.63 2.80 0.24 0.51 1.56 1.51 1.62

D. Gather Loads and Scatter Stores

In early iterations of SIMD extensions, vectorized mem-
ory accesses to and from non-consecutive addresses were
not supported. Gather instructions, which load from non-
consecutive addresses, were first introduced in AVX2 while
scatter instructions, which do the same for stores, were
introduced in AVX512. These instructions take a 64-bit general-
purpose register as base address and a vector register that
provides offsets. AVX2 supports eight 32-bit offsets or four 64-
bit offsets; AXV512 doubles this. Without these instructions,
the ISPC compiler must generate scalar loops to perform gathers
and scatters.

Gather and scatter operations are crucial for SIMD graph
algorithms. Indirect memory accesses (i.e. a[b[i]]) are
common in many graph formats, such as CSR, where they
are used to locate the edges for each node. Although AVX2
and AVX512 provides specialized instructions to handle gather
and scatter operations, we found performance issues compared
to their scalar variants. We use a microbenchmark that loads
random cache lines from a pre-allocated array using scalar or
gathers. In the gather, each SIMD lane accesses a different
cache line. We size the array to correspond to a particular level
of cache and make random accesses. This makes it very likely
that most accesses are satisfied from that particular cache level.

Table VI summarizes the results. Each row represents a
vector or scalar load configuration. Scalar1 through Scalar32, or
simply Scalarm, consecutively load from m scalar addresses to
different scalar registers. For Scalar16, this introduces register
spills, and the latency shown here incorporates this, and is
not load instruction latency alone. AVX2 and AVX512 are the
average load-to-use latency of a single 32-bit word using AVX2
and AVX512 gather loads respectively. Multiplying by the
SIMD width will yield the load-to-use latency of the entire
instruction.

We observe that the average per-word latency for AVX2
(1.02ns under L1 hit) is much higher than Scalar8 (0.30ns
under L1 hit), and this holds on both our Intel and AMD
machines. The AVX2 gather cannot complete until all eight 32-
bit words finish loading, while out-of-order execution allows the
Scalar8 load instructions to proceed as soon as the individual
memory word is fetched.

Only on the Phi processor is the per-word latency of AVX512
(0.98ns) lower than Scalar16 (1.51ns) for L1 hits. The Phi is
not as aggressive an out-of-order core as the Intel or AMD
processors, and hence it is unable to hide the scalar load latency.

267

TABLE VII
MACHINES USED IN THE EVALUATION

Parameter Intel AMD Phi
Model Xeon Silver 4108 EPYC 7502P Xeon Phi 7290
Clock 1.80 GHz 2.50 GHz 1.50 GHz
AVX AVX512 AVX2 AVX512
Core/Thread 8/16 32/64 72/288
Cache 11 MB L3 128 MB L3 36 MB L2
DRAM 48 GB 256 GB 16 GB MCDRAM
SMT 2-way 2-way 4-way

Gather loads are also a problem on GPUs, where they cause
memory divergence. Current GPUs use very high degree of
simultaneous multithreading (SMT) to hide load latencies and
do not implement out-of-order execution. For example, most
NVIDIA GPUs run 64 warps per streaming multiprocessor.
CPUs do not implement such high degree of SMT, but we find
that 2-way and 4-way SMT help alleviate some of this issue.

IV. EVALUATION

In this section, we evaluate the performance of our SIMD
graph algorithms. We also compare our implementation against
state-of-the-art proposals including Ligra, GraphIt and Galois.
We mainly use two machines, one with an Intel Xeon Silver
4108, the other with an AMD EPYC 7502P. We also run our
SIMD graph kernels on a machine with an Intel Xeon Phi
7290 processor. Table VII summarizes machine configurations.

Table VIII lists the kernels used in our evaluation. Note that
for ISPC, we run multiple variants of BFS. When comparing
against other proposals, we use BFS-WL. For SSSP-NF, we
use the same input-specific DELTA across all proposals. To
make sure our kernels execute correctly, we collect the outputs
and check them against the reference output. We also modify
Ligra and GraphIt to make sure they produce the same outputs.
We also carefully place the timers in all kernels to make sure
they measure the same type of useful work across different
proposals. We run each kernel 5 times on Phi and GPU, 20
times on Intel and AMD; and then report the average execution
time, excluding graph loading and output writing time. We use
a pthread-based ISPC tasking system, derived from the stock
ISPC pthread tasking system, adding the capability to pin tasks
on specific hardware threads. Unless otherwise specified, on
the Intel machine, we use 16-wide AVX512 target and launch
16 ISPC tasks; on AMD machine, we use 8-wide AVX2 target
and launch 64 tasks.

All frameworks use 32-bit node and and edge indices with
64-bit pointers. We compile Ligra, GraphIt, and Galois with
GCC using -O3 which enables auto-vectorization by default.
Disabling auto-vectorization using -fno-tree-vectorize
had no noticeable performance impact. Ligra and GraphIt use
Cilk as their underlying task system. For EGACS, we pin
threads on physical CPUs. This is for studying scalability and
SMT, not for performance. We found pinning alone speeds
up EGACS by 2% on average. Pinning was not used for
other systems. We use three input graphs: a uniform degree
planar USA-Road (23M nodes, 46M edges), a scale-free graph

bfs-wl sssp cc pr tri mis mst gmean

1

10

0.2
0.3
0.40.5

2
3
45

20
30
40

Sp
ee

du
p

ov
er

 S
er

ia
l

EGACS Ligra GraphIt Galois

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

(a) Intel

bfs-wl sssp cc pr tri mis mst gmean

0.1

1

10

0.2
0.30.40.5

2
34
5

20
304050

Sp
ee

du
p

ov
er

 S
er

ia
l

EGACS Ligra GraphIt Galois

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

(b) AMD

Fig. 4. Overall results comparing EGACS, Ligra, GraphIt, and Galois.

RMAT22 (4M nodes, 33M edges), and uniformly random graph
Random (8M nodes, 33M edges).

A. Comparison with Scalar Graph Frameworks

We compare the performance of EGACS to other CPU graph
processing frameworks. We also evaluate the contributions of
each optimization to overall performance.

1) Overall Performance: Figure 4 shows the speed up of
EGACS (SIMD kernels with all optimizations enabled), Ligra,
GraphIt, and Galois over the serial version. Execution times
are in Appendix A. The serial version is derived from our
ISPC code by marking all variables uniform and setting
task_count and program_count to 1, and recompiling.

On the Intel machine, compared to other state-of-the-art
proposals, in total 21 benchmark-input comparisons, our
EGACS ranks the fastest in 11 benchmark-input configurations,
second fastest in 9 configurations, and is slowest only for some
inputs of MIS and MST. Using USA-Road graph, EGACS on
average is 10.87x faster than Ligra and 3.77x faster than GraphIt
(excluding MST and MIS), 1.95x faster than Galois. EGACS
is also the fastest when using Random graph as input except
in BFS and SSSP. Ligra performs very well on RMAT22 and
Random graphs, for example, Ligra on BFS-WL with RMAT22
graph is 2.08x over EGACS.

On the AMD machine, similar trend is observed. In total
21 benchmark-input comparisons, EGACS ranks the fastest in
9 configurations, second fastest in 8 configurations. Averaged
across all common benchmarks and inputs, EGACS is 2.18x
faster than Ligra, 1.54 faster than GraphIt, and 1.55x faster
than Galois.

Ligra and GraphIt implement direction-optimizing BFS [71]
which is fundamentally faster than BFS-WL implemented in
EGACS for these graphs (but not for the USA-Road graph). Our
implementations lack algorithmic optimizations including not

268

TABLE VIII
BENCHMARKS AND ABSOLUTE EXECUTION TIME IN MILLISECONDS. FOR EACH INPUT GRAPH, WE INCLUDE SERIAL EXECUTION TIME AND THE BEST

PARALLEL EXECUTION TIME AMONG ALL EVALUATED PROPOSALS. DATA COLLECTED ON INTEL MACHINE.

Benchmark USA-Road (23M/57M) RMAT22 (4M/33M) Random (8M/33M)
Serial Best Serial Best Serial Best

BFS - Breadth-First Search 2032.21 261.94 EGACS 1038.53 59.16 Ligra 2695.86 119.19 Ligra
CC - Connected Components 5900.26 652.66 EGACS 6617.11 196.90 GraphIt 2035.48 212.69 GraphIt
TRI - Triangle Counting 2940.38 222.37 EGACS 19323.15 748.00 EGACS 8967.53 281.53 EGACS
SSSP - Single Source Shortest Path 3282.30 841.75 EGACS 6360.37 471.09 GraphIt 5188.37 375.85 GraphIt
MIS - Maximal Independent Set 5036.06 344.64 EGACS 2976.72 592.06 Galois 3893.84 626.32 EGACS
PR - Page Rank 37122.60 6001.35 Galois 24685.45 2833.61 EGACS 48577.26 3697.20 EGACS
MST - Minimum Spanning Tree 27301.77 9363.05 Galois 23433.13 9017.92 EGACS 60958.33 15967.40 Galois

bfs-wl bfs-cx bfs-tp bfs-hb cc tri. sssp mis pr mst gmean

1

2

3
4
5

Sp
ee

du
p

ov
er

 N
o-

op
t S

IM
D NP IO CC+NP IO+CC+NP IO+CC+NP+Fiber (Opt)

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om
Fig. 5. Individual optimization. Intel machine.

only direction optimization, but also bitvector representation,
blocking or vertex scheduling, and asynchronous execution
found in the other three graph systems. These algorithmic
optimizations make them fundamentally faster than EGACS.
In addition, PR and MST are affected by the extensive use
of cmpxchg in EGACS. However, our focus in this work
is on better using machine features, i.e. SIMD, rather than
algorithmic improvements.

2) Effect of Throughput Optimizations: Figure 5 shows
the effect of individual optimizations on the Intel machine.
Task-level cooperative conversion (CC) is always applied
in conjunction with nested parallelism (NP). Among our
benchmarks, only BFS supports fiber-level CC.

On average, applying all optimizations yields the highest
speedup over the unoptimized SIMD version. On the Intel
machine, when all optimizations are applied, the average
speedup for USA-Road graph is 2.10x, 1.77x for RMAT22,
and 1.24x for Random. For each individual kernel and input,
speedup ranges from 0.62x to 6.13x. Similar trend is observed
on AMD and Phi [72].

It is known that individual optimizations can slow down
performance on GPUs [73], and this seems to hold on the CPU
as well. For example, Fibers works best for BFS-CX and
BFS-HB, due to the significant atomic worklist push reduction.
However, in BFS-WL and SSSP, the performance benefit is not
enough to cancel out the overhead from executing additional
Fibers code, slowing down the programs.

Some optimizations change the order of work affecting
memory locality. For example, IO+CC+NP shows quite notice-
able slowdown for USA-Road and Random graphs on the CC
benchmark. In this case, the generated loop iterates over items
in an order that happens to suffer from poor locality, leading to
high cache and TLB miss rates. Interestingly, when Fibers

bfs-wl bfs-cx bfs-tp bfs-hb cc tri. sssp mis pr mst gmean

1

10

100

0.40.5

2
3
45

20
30
4050

Sp
ee

du
p

ov
er

 S
er

ia
l

+SIMD +MT +SIMD+MT +SIMD+MT+Opt

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

Fig. 6. Speedup due to SIMD and multi-tasking. Intel machine. +MT: Multi-
tasking, +SIMD: SIMD execution, +Opt: Throughput Optimizations.

is enabled on top of IO+CC+NP for CC, the slowdown goes
away because Fibers changes the iteration order, bringing
back memory locality.

B. Impact of SIMD

We evaluate the contribution of SIMD, Multi-tasking and
throughput optimizations. Then, we evaluate the effects of
SIMD width and AVX version.

1) SIMD vs. Multi-tasking: Speedup over serial is due to
both SIMD execution on each task as well as running multiple
independent tasks. We evaluate the individual contributions of
these two sources.

Figure 6 summarizes the contributions of multiple tasks and
the use of SIMD. Enabling SIMD alone is beneficial, resulting
in 1.37x speedup for USA-Road , 1.45x for RMAT22, and
2.15x for Random over the serial version. Similarly, enabling
multi-tasking alone is beneficial on average (1.47x for USA-
Road, 4.56x for RMAT22, and 4.26x for Random). However,
+MT slows down BFS-CX and SSSP with USA-Road since
additional atomic operations and barriers required for multi-
tasking affect scalability.

With both SIMD and multi-tasking enabled (+SIMD+MT),
the number of atomics is reduced due to local task-level
aggregation, and we see a significant performance boost (3.84x
for USA-Road, 7.96x for RMAT22, 13.71x for Random)
Adding throughput optimizations (+MT+SIMD+Opt) yields
the best performance on average (8.06x for USA-Road, 14.08x
for RMAT22, and 17.02x for Random).

2) SIMD Width: Figure 7 summarizes the effect of SIMD
width. Solid lines represent speedup of a particular AVX
target over AVX1-4; dotted lines represent number of dynamic
instructions normalized to AVX1-4. To avoid contributions

269

AVX1-4 AVX1-8
AVX1-16 AVX2-4 AVX2-8

AVX2-16
AVX512-8

AVX512-16
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Sp
ee

du
p

ov
er

 A
VX

1-
4

Speedup/USA-Rd
Dyn. Insts/USA-Rd

Speedup/RMAT22
Dyn. Insts/RMAT22

Speedup/Random
Dyn. Insts/Random

0.4

0.6

0.8

1.0

1.2

1.4

Dy

n.
 In

st
s N

or
m

al
ize

d
to

 A
VX

1-
4

Fig. 7. Speedup (solid lines) and normalized number of dynamic instructions
(dotted lines) vs. different AVX targets. Intel machine.

from barriers, task launching, and compare-and-swap retries,
we measure the number of dynamic instructions using a single-
task SIMD version. For speedup, we still launch multiple ISPC
tasks, i.e.16 tasks on Intel machine. Since all benchmarks show
similar trend for a particular input, each line represent the
geomean across all benchmarks for a particular input graph.

On average, wider SIMD is beneficial for USA-Road and
Random. Compared to AVX512-8, AVX512-16 results in 1.15x
and 1.07x speedup, respectively. However, AVX512-16 and
AVX512-8 have roughly the same execution time for RMAT22.
Since RMAT22 tends to have full SIMD lanes due to high
average degree, a slow 16-wide gather load can prevent future
dependent instruction from being issued.

For AVX2, AVX2-16 yields 1.17x and 1.61x speedup
over AVX2-8 and AVX2-4, respectively, for USA-Road. For
RMAT22, AVX2-16 and AVX2-8 have roughly the same
execution time. Since AVX2 natively supports only 8-wide 32-
bit integer operations, ISPC simulates 16-wide target by issuing
two consecutive 8-wide vector instructions. Therefore, gather
loads do not affect AVX2 as much since the two consecutive
instructions are guaranteed to be independent and have higher
instruction-level parallelism (ILP). However, we observe that
AVX2-16 requires more dynamic instructions than AVX2-8,
which reduces the benefit of higher ILP for RMAT22, leading
to no speedup for AVX2-16 over AVX2-8.

AVX512-16 has fewer dynamic instructions than AVX512-8.
For AVX2 and AVX1, the 8-wide version has the least number
of instructions. Their 4-wide target under-utilizes the 8-wide
SIMD units, while their 16-wide target requires additional
instructions. Both result in higher number of instructions over
the 8-wide version.

3) AVX Version: Figure 7 also summarizes the effect
of different AVX versions. Newer versions of AVX have
significant reductions in total dynamic instructions (including
scalar) over older versions. For USA-Road, AVX512-16 has
1.41x fewer instructions than AVX2-16 which in turn executes
1.59x fewer instructions than AVX1-16. These reductions are
due to the new instructions (such as gathers, scatters) and
predication.

The reduction does not always translate to higher perfor-
mance. For example, AVX512-16 is slower than AVX2-16 for
Random and RMAT22 due to microarchitectural implemen-
tation. Our Intel processor has only one 16-wide SIMD unit

1 2 4 8 9 16 32 72
Number of Cores

1

10

100

2
5

20
50

Sp
ee

du
p

Ov
er

 S
er

ia
l Phi Intel AMD

18 36

Fig. 8. Speedup vs. different number of cores. Upper and lower error bars
represent the best and the worst scaling.

bfs-wl bfs-cx bfs-tp bfs-hb cc tri. sssp mis pr mst gmean

0.1

1

10

0.05

0.2
0.3
0.40.5

2
3
45

Sp
ee

du
p

ov
er

 E
GA

CS
 (I

nt
el

) EGACS (AMD) EGACS (Phi) GPU GPU No Data Transfer

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

US
A-

Rd
RM

AT
22

Ra
nd

om

Fig. 9. CPU vs. GPU. GPU data collected on NVIDIA Quadro P5000.

composed of two 8-wide units. The AVX512-16 instructions
use the whole unit, whereas the AVX2-16 use two 8-wide
independent instructions. This means the AVX2-16 can benefit
from both higher ILP as well as lower gather latency.

C. Scalability

Figure 8 shows speedup over serial version as the number
of tasks (and hence cores used) is increased. Tasks are pinned
to cores, and we do not use SMT, which will be studied
later (Section IV-D1). Here we show the geomean across all
three inputs since they all have similar scaling trend. As can
be seen, the benchmarks scale pretty well, as they show nearly
linear scaling for Intel, for AMD with 16 or fewer cores, and
for Phi with 18 or fewer cores. Beyond that, the scaling stops
for a number of benchmark and input combinations. However,
on average, we still see a significant speedup with 32 cores
over 16 cores (1.27x) on AMD. On Phi, the 36-core version
on average still shows further speedup (1.28x) over 18-core
version. However, when all 72 cores are enabled, we see a
slowdown over the 36-core version (0.89x). Notably, use of
SIMD contributes additional scaling, leading to maximum
speed ups of 65.12x on Intel (8 cores), 131.55x for AMD (32
cores) and 111.85x for Phi (36c).

D. CPU vs. GPU

Our experimental setup allows us to compare CPUs against
the GPU, running the same kernels generated by the same
compiler for the CUDA backend. To ensure a fair comparison,
we also include the time for data transfers to and from the
GPU. We use a Quadro P5000, which has 20 32-wide streaming
multiprocessors. Figure 9 shows the speedup over our EGACS
from Intel machine.

On average, GPU is the fastest. The GPU speed up ranges
from 0.06x to 6.81x for USA-Road, 0.30x to 3.51x for

270

TABLE IX
MEMORY FOOTPRINT SIZE IN MB AND SLOWDOWN WHEN AVAILABLE

MEMORY EQUALS TO 75% AND 50% OF FOOTPRINT SIZEa

App GPU CPU
Mem 75% 50% Mem 75% 50%

bfs-wl 2987 3556.74 DNFb 2653 59.46 187.53
cc 9321 2.93 5.95 7472 45.78 OOMc

tri 6899 2.20 5474.30 4112 799.50 2720.66
sssp 4928 2828.54 DNFb 4643 15.45 51.46
mis 5387 2.92 4.61 5402 39.30 95.13
pr 4436 DNFb DNFb 4478 24.46 397.73

mst 13333 2.04 6.33 12602 6.35 OOMc

aUsing OSM-EUR graph: 174M nodes, 696M edges, 3.89 GB
bDid not finish after 5 hours. The slowdown is more than 5000x.
cKilled due to out-of-memory. The system has only 5.9GB swap space.

RMAT22, and 0.31x to 3.13x for Random, compared to the Intel
CPU. However, there are three exceptions where the Intel CPU
is notably faster, BFS-TP (USA-Road) and MST (RMAT22 and
Random). For BFS-WL(USA-Road) , BFS-CX(USA-Road),
and SSSP (USA-Road), AMD is slightly faster than CUDA.
Although the specifications of Phi look close to our GPU, this
does not always translates to performance. On average, Phi
is slower than the GPU. However, we found Phi faster in 8
out of 30 benchmark-input combinations with speedup ranging
from 1.31x to 16.80x.

The GPU No Data Transfer results do not include the
time to copy data to and from the GPU. Without this overhead,
unnecessary on the CPU, the GPU is the fastest except for a
few benchmarks. Phi is faster than GPU for TRI (USA-Road
and Random), MIS (USA-Road and Random) by 1.10x, 1.38x,
1.14x, and 1.29x; Intel is faster than GPU for MST (RMAT22
and Random) by 3.22x and 3.23x, respectively.

1) Effect of Virtual Memory: Recent GPUs support virtual
memory [74], lack of which has previously limited graph sizes,
permitting us to evaluate the virtual memory capabilities of
GPUs for graph algorithms .

Since all our frameworks use 32-bit addressing for graph
data structures, we add a larger OSM-EUR graph (174M nodes,
696M edges, 3.89 GB) and limit the amount of physical
memory available to a benchmark. This methodology also
allows us to study the effect of multiple simulated physical
memory sizes using the same input. On the CPU, we use
cgroups to limit physical memory, while on the GPU we run
a separate process to allocate GPU memory using cudaMalloc
(whose allocations are non-pageable) making it unavailable to
the benchmarks.

Table IX shows the memory footprint size of graph analysis
on the CPU and GPU version without memory limitations. For
our experiments, we limit the physical memory to 75% and 50%
of this footprint size, and report normalized execution time.
BFS-WL, SSSP, and PR ends up with dramatic slowdown
on the GPU, making the system totally unusable, but only
moderate slowdown on CPU. When limiting physical memory
to 75% footprint size, CPU versions in general show higher
slowdown than the GPU, except for BFS-WL, SSSP, and PR.
When limiting physical memory to 50% footprint size, only

1 102 3 4 5 20 30 40 50
Number of Cores

1

2

3

SM
T

Sp
ee

du
p

Ov
er

 N
o-

SM
T

Phi/SMT (4 Tasks/Core) vs. no-SMT (1 Task/Core)
Intel/SMT (2 Tasks/Core) vs. no-SMT (1 Task/Core)
AMD/SMT (2 Tasks/Core) vs. no-SMT (1 Task/Core)

Phi/SMT vs. Serial
Intel/SMT vs. Serial
AMD/SMT vs. Serial

10

3
4
5

20
30
40
50

SM
T

Sp
ee

du
p

Ov
er

 S
er

ia
l

Fig. 10. Assigning multiple tasks on SMT cores.

MIS shows higher slowdown on the CPU than the GPU. Except
for the two OOM errors in CC and MST, benchmarks on the
CPU do not suffer from catastrophic slowdown.

2) Effect of SMT: We evaluate SMT by launching as many
ISPC tasks as hardware threads and pinning each task to a
dedicated hardware thread. For our “no-SMT” experiments
where SMT is not used, we pin tasks to ensure only one task
runs per core.

Figure 10 shows results from Intel, AMD, and Phi. Solid
lines represent SMT speedups over no-SMT with the same
number of cores enabled. Dotted lines represent speedups over
serial version with and without SMT enabled, for a given
number of cores. Since all three inputs show almost identical
scaling trend, we show the geomean across all inputs.

On average, SMT benefits our benchmarks. For example,
with 2 cores, enabling SMT gives us 1.61x, 1.93x and 3.54x
speedup over no-SMT on Intel, AMD, and Phi, respectively.
However, as the number of cores increase, the benefits decrease
– speedups from SMT are only 1.52x and 1.07x when all cores
are enabled for Intel (8 cores) and AMD (32 cores). Indeed,
on Phi, when all 72 cores are used, we end up with slowdown
(0.58x).Preliminary experimental results show that L3 latency
on the AMD machine for MIS/USA-Road increases 2.30x
from 16-thread to 32-thread configuration pointing to increased
memory contention as the cause for poor scaling.

V. CONCLUSION

This work has presented the first compiler for CPU SIMD
graph algorithms by extending an earlier GPU graph algorithm
compiler to generate ISPC code. We have shown that the
fastest SIMD implementations outperform the state-of-the-art
non-SIMD CPU graph frameworks, Ligra, GraphIt, and Galois
by 3.06x, 1.53x and 1.78x, respectively. Since SIMD can be
added to these frameworks, our work is complementary to
these proposals. The GPU optimizations have been adapted
for CPUs, resulting in an additional 1.67x speedup over just
SIMD. Comparing the CPU and GPU versions of the same
algorithm, we found that even accounting for data transfers the
GPU is 1.24x (Phi) to 1.76x (Intel) faster, though its virtual
memory subsystem needs improvement.

APPENDIX A
RAW NUMBERS

Table X lists the absolute execution time in milliseconds
comparing EGACS, Ligra, GraphIt, and Galois on both Intel

271

and AMD machines. We use AVX512 on the Intel machine
and AVX2 on the AMD machine. Times in bold are the lowest
execution time for a particular benchmark-input configuration.

APPENDIX B
ARTIFACT

A. Abstract

Our artifact provides sources for all evaluated benchmarks
and the extended IrGL compiler that compiles the benchmarks,
along with a set of scripts to run experiments and generate
execution data and speedup graphs. We also include Ligra,
GraphIt, and Galois sources that we used in writing the paper.
The GPU version of our benchmarks are also included. Using
these sources and scripts, users should be able to run our
experiments on any supported machine and generate result
figures and tables.

In addition, we include reference results and plot scripts.
These are what we used in writing this paper. They can be used
to generate the exact same plots and tables as in the paper.

B. Artifact Checklist

• Algorithm: AVX SIMD graph code generation.
• Program: BFS, SSSP, CC, TRI, MIS, PR, MST (sources

included in the artifact).
• Compilation: GCC and ISPC (download script included

in the artifact), CUDA (optional).
• Transformations: An extended IrGL compiler that

targets ISPC, included in the artifact.
• Binary: Not included, but can be generated from the

sources we provide.
• Data set: USA-Road, RMAT22, and Uniformly Random

graphs.
• Run-time environment: GNU/Linux, x86.

TABLE X
EXECUTION TIMES IN MILLISECONDS

Algorithm bfs-wl bfs-cx bfs-tp bfs-hb
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 2032.21 1038.53 2695.86 2230.16 1765.41 3623.18 56324.60 22765.13 30310.23 2234.89 22795.74 30380.20

EGACS 261.94 123.18 175.10 277.30 138.37 185.06 755.88 222.46 328.70 279.91 225.09 325.65
Ligra 3063.62 59.16 119.19 NA NA NA NA NA NA NA NA NA

GraphIt 265.50 137.92 177.68 NA NA NA NA NA NA NA NA NA
Galois 817.95 201.95 300.25 NA NA NA NA NA NA NA NA NA

Algorithm cc tri sssp mis
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 5900.26 6617.11 2035.48 2940.38 19323.15 8967.53 3282.30 6360.37 5188.37 5036.06 2976.72 3893.84

EGACS 652.66 529.56 265.68 222.37 748.00 281.53 841.75 742.88 447.07 344.64 592.06 626.32
Ligra 7978.91 239.75 277.72 2712.88 1721.78 1510.77 9922.45 924.70 797.02 NA NA NA

GraphIt 39538.90 196.90 212.69 246.27 872.31 476.37 8270.20 471.09 375.85 NA NA NA
Galois 1047.95 651.10 653.30 781.05 1758.05 1067.15 960.55 828.40 716.80 1990.45 473.00 803.80

Algorithm pr mst
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 37122.60 24685.45 48577.26 27301.77 23433.13 60958.33

EGACS 6379.18 2833.61 3697.20 9511.18 9017.92 20403.02
Ligra 47077.08 13482.99 23320.65 NA NA NA

GraphIt 7225.77 3980.38 5730.18 NA NA NA
Galois 6001.35 3730.70 6212.45 9363.05 16880.45 15967.40

(a) Intel

Algorithm bfs-wl bfs-cx bfs-tp bfs-hb
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 1127.05 956.12 1820.60 1197.12 1243.99 2141.42 44102.08 18996.97 23515.74 1192.45 18905.33 23446.25

EGACS 192.38 95.86 255.18 186.79 95.17 154.53 420.19 115.98 212.20 187.27 125.74 220.60
Ligra 2848.24 36.60 65.16 NA NA NA NA NA NA NA NA NA

GraphIt 200.18 55.98 95.18 NA NA NA NA NA NA NA NA NA
Galois 995.00 289.10 353.40 NA NA NA NA NA NA NA NA NA

Algorithm cc tri sssp mis
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 3608.42 3454.41 1771.98 2703.32 14073.54 8764.69 1771.91 5945.43 4166.72 3185.45 2304.91 3197.87

EGACS 572.21 321.72 176.80 216.99 316.66 253.17 624.80 533.31 494.70 298.63 194.40 331.10
Ligra 7406.62 160.31 170.27 865.21 416.09 579.83 5673.05 651.90 520.43 NA NA NA

GraphIt 32124.93 142.85 183.77 190.43 292.58 204.58 8421.77 346.13 267.45 NA NA NA
Galois 537.10 373.25 452.25 444.05 543.15 459.85 667.05 591.35 468.55 1358.00 285.30 519.55

Algorithm pr mst
Graph USA-Rd RMAT22 Random USA-Rd RMAT22 Random
Serial 20238.76 15909.12 30466.82 10977.92 11653.50 34160.67

EGACS 3769.64 1361.45 1839.78 7316.97 9342.53 21458.48
Ligra 9203.36 7640.12 12417.88 NA NA NA

GraphIt 10791.36 4127.19 7590.48 NA NA NA
Galois 2671.40 2051.20 2995.30 7848.40 15260.85 15787.55

(b) AMD

272

• Hardware: Multi-core CPU with AVX2 support. We
used Xeon Silver 4108, EPYC 7502P, and Xeon Phi 7290.
Optionally, a CUDA 10.0 capable GPU. We used NVIDIA
Quadro P5000 GPU.

• Output: Execution time, speedup and scalability plots.
• Disk space required: 15 GB.
• Time needed to prepare workflow: 1 hour.
• Time needed to complete main experiments: 16 hours.
• Time needed to complete all experiments: 53 hours.

C. Description

1) How Delivered: Sources and inputs are available at
https://doi.org/10.5281/zenodo.4279811

2) Hardware Dependencies: Multi-core CPU with AVX2
support. We used Xeon Silver 4108, EPYC 7502P, and Xeon
Phi 7290. Optionally, a CUDA 10.0 capable GPU. We also
used NVIDIA Quadro P5000 GPU.

3) Software Dependencies: GNU/Linux (we used Ubuntu
18.04), GCC (we used 7.5.0, or newer version should also
work), Intel ISPC 1.12 (download script included), Intel
Pin 3.11 (optional, download script included). Python 2.7
and additional packages: toposort, cgen, pycparser,
future, numpy, matplotlib, and seaborn. Optional
for Ligra/GraphIt/Galois: Cilk for GCC 7.5.0, OpenMP 4.5,
CMake 3.10, and Boost 1.65. Optional for GPU benchmarks:
CUDA 10.0. All other dependencies are included in the artifact.

4) Data Sets: USA-Road, RMAT22 and Random (r4-2e23)
graphs.

D. Installation

$ # Install packages, assuming Ubuntu 18.04
$ sudo apt install build-essential python python-pip
$ sudo apt install cmake libboost-all-dev # Optional

$ # Download and extract artifact tarball
$ # And then set up root path
$ tar -xvf sources.tar.bz2
$ cd artifact
$ export ARTIFACT_ROOT=$(pwd)

$ # Downgrade Python pytools package,
$ # if your pytools > 2020.1
$ # Please make sure you are using Python 2.7
$ pip uninstall pytools
$ pip install pytools==2020.1

$ # Install Python 2.7 packages
$ pip install toposort cgen pycparser future
$ pip install numpy matplotlib seaborn # For plotting

$ # Download Intel ISPC
$ cd $ARTIFACT_ROOT/ispc
$./download

$ # [Optional] Download Intel Pin for Fig. 7
$ cd $ARTIFACT_ROOT/pin
$./download

$ # Build EGACS runtime library
$ cd $ARTIFACT_ROOT/ggc-ispc
$ make rt

$ # [Optional] Build CUDA runtime for Fig. 9
$ cd $ARTIFACT_ROOT/ggc-cuda
$ make rt
$ cd $ARTIFACT_ROOT/ggc-cuda-vm
$ make rt

$ # [Optional] Build GraphIt for Fig. 4 and Table X

$ cd $ARTIFACT_ROOT/graphit
$./build-artifact

$ # [Optional] Build Galois for Fig. 4 and Table X
$ cd $ARTIFACT_ROOT/galois
$./build-artifact

1) Inputs: Download inputs.tar.xz into
$ARTIFACT_ROOT/inputs

Next, extract the tarball
$ cd $ARTIFACT_ROOT/inputs
$ tar -xvf inputs.tar.xz

2) Detecting ISPC Target: We provide a script that automat-
ically detects the best ISPC AVX target on current machine
and sets up the Makefile.
$ cd $ARTIFACT_ROOT/ggc-ispc/skelapp-ispc
$ python detect_target.py

To specify a custom target other than the default one, please
refer to “ISPC target” paragraph in “Experiment customization”
section for details.

E. Experiment Workflow

The default experimental setup is intended for use on a
single-socket multi-core 2-way SMT machine.

For a multi-socket machine, a CPU that has no SMT, or
more than 2-way SMT, the script may have be modified to
instruct EGACS on how to pin threads on the machine. Please
refer to “Experiment customization” section for details.

After running the experiments, raw performance numbers,
generated figures, and tables will be placed in the following
directories, respectively.
$ARTIFACT_ROOT/ggc-ispc/eval/results
$ARTIFACT_ROOT/ggc-ispc/eval/plot/plots
$ARTIFACT_ROOT/ggc-ispc/eval/plot/tables

1) EGACS Results: Fig. 5 and 6.
$ cd $ARTIFACT_ROOT/ggc-ispc/eval
$ make -f Makefile.general all # Run experiments

about 16 hours
$ cd $ARTIFACT_ROOT/ggc-ispc/eval/plot
$ python plot_ispc.py # Fig. 5
$ python plot_breakdown.py # Fig. 6

2) Scalability Results: Partial Fig. 8 and 10. The original
Fig. 8 and 10 consist of results from 3 different machines.
The artifact scripts generate results for the machine on which
EGACS is running. The default setup assumes a 8-core 16-
thread single-socket Linux machine. Otherwise please refer
to ”Experiment customization” section on how to modify the
script. (Makefile.thread).
$ cd $ARTIFACT_ROOT/ggc-ispc/eval
$ make -f Makefile.thread all # 16 hours
$ cd $ARTIFACT_ROOT/ggc-ispc/eval/plot
$ python plot_thread_local.py # partial Fig. 8
$ python plot_smt_local.py # partial Fig. 10

3) AVX-Target Results: Fig. 7. Intel Pin required.
$ cd $ARTIFACT_ROOT/ggc-ispc/eval
$ make -f Makefile.target all # 12 hours
$ make -f Makefile.target.icount all # 4 hours
$ cd $ARTIFACT_ROOT/ggc-ispc/eval/plot
$ python plot_target_local.py # Fig. 7

273

4) GPU Results: Fig. 9. CUDA 10.0 capable GPU required
for running GPU benchmarks.
$ cd $ARTIFACT_ROOT/ggc-cuda/eval
$ make all # 1 hour
$ cd $ARTIFACT_ROOT/ggc-cuda-vm/eval
$ make all # 1 hour
$ cd $ARTIFACT_ROOT/ggc-ispc/eval/plot
$ python plot_gpu.py # Fig. 9

5) Ligra/GraphIt/Galois Results: Fig. 4 and Table X. Cilk
and OpenMP required.
$ cd $ARTIFACT_ROOT/ligra/eval
$ make perf_all # 2 hours
$ cd $ARTIFACT_ROOT/graphit/eval
$ make perf_all # 2 hours
$ cd $ARTIFACT_ROOT/galois/eval
$ make perf_all # 1 hour
$ cd $ARTIFACT_ROOT/ggc-ispc/eval/plot
$ python plot_compare.py # Fig. 4
$ python table_raw.py # Table X

F. Evaluation and Expected Results

Reference results are placed in ref directory. Figures in
the paper can be regenerated using the scripts we provide.
Generated figures are placed in ref/plots. Tables are placed
in ref/tables.
$ cd $ARTIFACT_ROOT/ref
$ python plot_compare.py # Fig. 4 (Intel)
$ python plot_compare_amd.py # Fig. 4 (AMD)
$ python table_raw.py # Table X (Intel)
$ python table_raw_amd.py # Table X (AMD)
$ python plot_ispc.py # Fig. 5
$ python plot_breakdown.py # Fig. 6
$ python plot_target2.py # Fig. 7
$ python plot_thread2.py # Fig. 8
$ python plot_gpu.py # Fig. 9
$ python plot_smt2.py # Fig. 10
$ python table_uvm.py # Table IX
$ python table_vm.py # Table IX

G. Experiment Customization

The experiments are fully customizable. For example, users
can enable/disable the desired IrGL optimizations, set number
of threads and pinning policy, and change ISPC AVX target.

1) IrGL Optimizations: Predefined optimization combina-
tions are in ggc-ispc/bmks/Makefile.ispc. Users can
simply add a Makefile target following the existing ones as
example. Next, users can run those targets from
ggc-ispc/eval/Makefile.general by simply ap-
pending the desired targets to ALL_CONFIGS.

2) Number of Threads and Pinning Policy: This can be
changed in our evaluation Makefile by setting TASK variable
in ggc-ispc/eval/Makefile.general. Default value
is 0-0, meaning our EGACS will determine number of threads
automatically. There are two fields in this variable: the first
field sets total number of worker threads. The second field
sets the distance between two logical CPU IDs on which
two consecutive worker threads are pinned. For example, 2-1
instructs EGACS to create 2 worker threads: thread #0 is pinned
on CPU #0, thread #1 on CPU #1. 4-2 instructs EGACS to
create 4 worker threads: thread #0 is pinned on CPU #0, thread
#1 on CPU #2, thread #2 on CPU #1, and thread #3 on CPU
#3. Correctly setting the value of this variable is important for
scalability results (Makefile.thread).

3) ISPC Target: Intel ISPC compiler supports a wide range
of targets. Possible targets include avx512skx-i32x16 for
Skylake-X CPUs, avx512knl-i32x16 for Xeon Phi CPUs,
and avx2-i32x16 for generic AVX2 CPUs. To specify a
custom target, there are two possible ways. First, editing

$ARTIFACT_ROOT/ggc-ispc/skelapp-ispc/SAMakefile

and adding the following line after line 28

TARGET = avx512skx-i32x16

Or, setting CUSTOM_TARGET variable when running evalua-
tion commands. For example,

$ cd $ARTIFACT_ROOT/ggc-ispc/eval
$ CUSTOM_TARGET=avx2-i32x16 make -f Makefile.general

will run main EGACS experiments with AVX2x16 target.

REFERENCES

[1] M. Pharr, “The story of ispc: origins (part 1),” Apr 2018, (Accessed on
08/27/2020). [Online]. Available: https://pharr.org/matt/blog/2018/04/18/i
spc-origins.html

[2] M. Pharr and W. R. Mark, “ispc: A spmd compiler for high-performance
cpu programming,” in 2012 Innovative Parallel Computing (InPar).
IEEE, 2012, pp. 1–13.

[3] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
2013, pp. 135–146.

[4] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“Graphit: A high-performance graph dsl,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–30, 2018.

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: mining peta-
scale graphs,” Knowledge and information systems, vol. 27, no. 2, pp.
303–325, 2011.

[6] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework
for numerical and combinatorial computing,” Computing in Science &
Engineering, vol. 10, no. 2, pp. 20–25, 2008.

[7] A. Lugowski, D. Alber, A. Buluç, J. R. Gilbert, S. Reinhardt, Y. Teng, and
A. Waranis, “A flexible open-source toolbox for scalable complex graph
analysis,” in Proceedings of the 2012 SIAM International Conference on
Data Mining. SIAM, 2012, pp. 930–941.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[9] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in
Proceedings of the 25th International Conference on Scientific and
Statistical Database Management, 2013, pp. 1–12.

[10] C. Martella, R. Shaposhnik, D. Logothetis, and S. Harenberg, Practical
graph analytics with apache giraph. Springer, 2015, vol. 1.

[11] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and
J. Hellerstein, “Graphlab: A new framework for parallel machine learning,”
arXiv preprint arXiv:1408.2041, 2014.

[12] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning in
the cloud,” arXiv preprint arXiv:1204.6078, 2012.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs,” in Presented
as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), 2012, pp. 17–30.

[14] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haradasan, “Managing large graphs on multi-cores with graph
awareness,” in Presented as part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12), 2012, pp. 41–52.

[15] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), 2012, pp. 31–46.

274

[16] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P.
Chew, “Optimistic parallelism requires abstractions,” in Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2007, pp. 211–222.

[17] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: a dsl for
easy and efficient graph analysis,” in Proceedings of the seventeenth
international conference on Architectural Support for Programming
Languages and Operating Systems, 2012, pp. 349–362.

[18] D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library
for distributed graph computations,” Parallel Object-Oriented Scientific
Computing (POOSC), vol. 2, pp. 1–18, 2005.

[19] S. Pai and K. Pingali, “A compiler for throughput optimization of
graph algorithms on gpus,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2016, pp. 1–19.

[20] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for
sparse matrix code,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 521–532,
2015.

[21] T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodrı́guez, “Generating
piecewise-regular code from irregular structures,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 625–639.

[22] M. S. Mohammadi, T. Yuki, K. Cheshmi, E. C. Davis, M. Hall, M. M.
Dehnavi, P. Nandy, C. Olschanowsky, A. Venkat, and M. M. Strout,
“Sparse computation data dependence simplification for efficient compiler-
generated inspectors,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2019, pp. 594–609.

[23] D. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a
hardware/software approach. Gulf Professional Publishing, 1999.

[24] D. Sampaio, R. M. d. Souza, S. Collange, and F. M. Q. Pereira,
“Divergence analysis,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 35, no. 4, pp. 1–36, 2014.

[25] Y. Lee, V. Grover, R. Krashinsky, M. Stephenson, S. W. Keckler,
and K. Asanovic, “Exploring the design space of spmd divergence
management on data-parallel architectures,” in 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 2014,
pp. 101–113.

[26] A. W. Appel and A. Bendiksen, “Vectorized garbage collection,” The
Journal of Supercomputing, vol. 3, no. 3, pp. 151–160, 1989.

[27] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal, “Efficient and
simplified parallel graph processing over cpu and mic,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 819–828.

[28] M. Paredes, G. Riley, and M. Luján, “Breadth first search vectorization on
the intel xeon phi,” in Proceedings of the ACM International Conference
on Computing Frontiers, 2016, pp. 1–10.

[29] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in
graph algorithms using simd instructions,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1587–1602.

[30] J. Zhang, Y. Lu, D. G. Spampinato, and F. Franchetti, “Fesia: A fast and
simd-efficient set intersection approach on modern cpus,” in 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE,
2020, pp. 1465–1476.

[31] H. Inoue, M. Ohara, and K. Taura, “Faster set intersection with simd
instructions by reducing branch mispredictions,” Proceedings of the
VLDB Endowment, vol. 8, no. 3, pp. 293–304, 2014.

[32] B. Schlegel, T. Willhalm, and W. Lehner, “Fast sorted-set intersection
using simd instructions.” ADMS@ VLDB, vol. 1, p. 8, 2011.

[33] S. Grossman, H. Litz, and C. Kozyrakis, “Making pull-based graph
processing performant,” ACM SIGPLAN Notices, vol. 53, no. 1, pp.
246–260, 2018.

[34] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High performance
graph analytics made productive,” Proc. VLDB Endow., vol. 8, no. 11, p.
1214–1225, Jul. 2015.

[35] L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, and X. Feng,
“Lazygraph: lazy data coherency for replicas in distributed graph-parallel
computation,” ACM SIGPLAN Notices, vol. 53, no. 1, pp. 276–289, 2018.

[36] C. Xu, K. Vora, and R. Gupta, “Pnp: Pruning and prediction for point-
to-point iterative graph analytics,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 587–600.

[37] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-centric
distributed graph processing system,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), 2016, pp.
301–316.

[38] A. Mazloumi, X. Jiang, and R. Gupta, “Multilyra: Scalable distributed
evaluation of batches of iterative graph queries,” in 2019 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 2019, pp. 349–358.

[39] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel
processing of compressed graphs with ligra+,” in 2015 Data Compression
Conference. IEEE, 2015, pp. 403–412.

[40] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proceed-
ings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, 2017, pp. 293–304.

[41] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun, “The
graph based benchmark suite (gbbs),” in Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), 2020, pp. 1–8.

[42] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for
graph analytics,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013, pp. 456–471.

[43] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 293–302.

[44] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms with
graphit,” in Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization, 2020, pp. 158–170.

[45] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali, “Gluon: A communication-optimizing substrate
for distributed heterogeneous graph analytics,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2018, pp. 752–768.

[46] E. Elsen and V. Vaidyanathan, “Vertexapi2–a vertex-program api for large
graph computations on the gpu,” URL www. royal-caliber. com/vertexapi2.
pdf, 2014.

[47] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu, “A yoke
of oxen and a thousand chickens for heavy lifting graph processing,” in
Proceedings of the 21st international conference on Parallel architectures
and compilation techniques, 2012, pp. 345–354.

[48] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2013.

[49] U. Cheramangalath, R. Nasre, and Y. Srikant, “Falcon: A graph
manipulation language for heterogeneous systems,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 12, no. 4, pp. 1–27,
2015.

[50] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2016, pp. 1–12.

[51] N. Bell and M. Garland, “Cusp: Generic parallel algorithms for sparse
matrix and graph computations,” Version 0.3. 0, vol. 35, 2012.

[52] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traversal,”
ACM Sigplan Notices, vol. 47, no. 8, pp. 117–128, 2012.

[53] J. Soman, K. Kishore, and P. Narayanan, “A fast gpu algorithm for graph
connectivity,” in 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE,
2010, pp. 1–8.

[54] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in 2013 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
2013, pp. 185–195.

[55] C. da Silva Sousa, A. Mariano, and A. Proença, “A generic and highly
efficient parallel variant of boruvka’s algorithm,” in 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE, 2015, pp. 610–617.

[56] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE,
2014, pp. 349–359.

[57] A. Polak, “Counting triangles in large graphs on gpu,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2016, pp. 740–746.

275

[58] M. A. Awad, S. Ashkiani, S. D. Porumbescu, and J. D. Owens,
“Dynamic graphs on the GPU,” in Proceedings of the 34th
IEEE International Parallel and Distributed Processing Symposium,
ser. IPDPS 2020, May 2020, pp. 739–748. [Online]. Available:
https://escholarship.org/uc/item/48j4k7np

[59] L. Wang and J. D. Owens, “Fast bfs-based triangle counting on gpus,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1–6.

[60] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[61] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on gpus,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, 2019,
pp. 201–213.

[62] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: minimizing data
transfer during out-of-gpu-memory graph processing,” in Proceedings
of the Fifteenth European Conference on Computer Systems, 2020, pp.
1–16.

[63] M. E. Belviranli, F. Khorasani, L. N. Bhuyan, and R. Gupta, “Cumas:
Data transfer aware multi-application scheduling for shared gpus,” in
Proceedings of the 2016 International Conference on Supercomputing,
2016, pp. 1–12.

[64] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient
graph processing on gpus,” in 2015 International Conference on Parallel
Architecture and Compilation (PACT). IEEE, 2015, pp. 39–50.

[65] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming. O’Reilly
& Associates, Inc., 1996.

[66] C. E. Leiserson, “The cilk++ concurrency platform,” The Journal of
Supercomputing, vol. 51, no. 3, pp. 244–257, 2010.

[67] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[68] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[69] A. Magni, C. Dubach, and M. F. O’Boyle, “A large-scale cross-
architecture evaluation of thread-coarsening,” in SC’13: Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 2013, pp. 1–11.

[70] J. A. Stratton, S. S. Stone, and W. H. Wen-mei, “Mcuda: An efficient
implementation of cuda kernels for multi-core cpus,” in International
Workshop on Languages and Compilers for Parallel Computing. Springer,
2008, pp. 16–30.

[71] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” Scientific Programming, vol. 21, no. 3-4, pp. 137–148, 2013.

[72] R. Zheng, “Efficient execution of graph algorithms on cpu with simd
extensions,” Master’s thesis, University of Rochester, Dec. 2020.

[73] T. Sorensen, S. Pai, and A. F. Donaldson, “One size doesn’t fit all:
Quantifying performance portability of graph applications on gpus,”
in 2019 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2019, pp. 155–166.

[74] T. NVIDIA, “P100 gpu,” Pascal Architecture White Paper, 2016.

276

