
CSC2/452 Computer Organization
The Processor Pipeline and Performance

Sreepathi Pai

URCS

October 21, 2019

Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM

Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM

CPU and RAM

RAM

CPU

ALUALU FPU

AGU L/SU

Fetch Decode

Re
gi

st
er

s

Execute Memory Writeback

Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM

Cycle

I Most digital circuits operate on a clock

I Inputs are read/written on a clock pulse
I The time between two consecutive clock pulses is called a

cycle
I Shorter cycles imply higher frequencies
I A cycle is roughly a step

I Time for a circuit to do its task is usually expressed in cycles
I Number of steps to do a task

I Moore’s law allowed higher frequencies
I Same number of steps/cycles, but 2x the speed if frequency

doubled

Bypassing and Forwarding

IF ID EX MEM WB
I Results are written to register file in WB stage
I So the sequence addq %rax, %rbx ; subq %rbx, %rcx

will have to stall to allow the add to reach the WB stage
I Usually by inserting bubbles in between the two instructions

Bypassing and Forwarding

IF ID EX MEM WB

Bypass Path

I Results are bypassed (or forwarded, in time) to the next
instruction

I Now the sequence addq %rax, %rbx ; subq %rbx, %rcx
will not stall
I MEM will forward results to EX

Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM

Goals: Minimize Time

T =
W × t

P

I Minimize T
I in a pipelined machine, how should we write code to minimize

T?
I how can we measure the effectiveness of our methods?

Minimizing T

I To minimize T , simplistically, we need to:
I Reduce W × t
I Increase P

The Profiler

I A profiler is a tool that tells you where most of the time in
your program is being spent

I Different levels of information reporting
I Instructions
I Lines of code
I Functions (most common reporting)

I Tools
I gprof, you must compile your code as gcc -pg [See textbook

for an extended example]
I Linux perf (with its perf record and perf report

subcommand)

Using the Profiler

I The profiler tells you which part of the code takes the most
time
I Sometimes called a “hot region”
I Often this is a loop, so called a “hot loop”

I Performance optimization usually focuses on reducing the
time for this region

I Profiler results can be used to find upper bounds on speed up
possible
I If a code takes 50% of the time, maximum speedup is 2x
I If a code takes 90% of the time, maximum speedup is 10x
I If a code takes 99% of the time, maximum speedup is 100x
I If a code takes 75% of the time, what is the maximum

speedup?

Timing Regions of Code

start = timer();
for(i = 0; i < 10000; i++) {

// loop body
}
stop = timer();
duration = start - stop;

I You can also time individual pieces of code
I Bracket the code with the correct form of timer() function

I There is no such function called timer
I There are many different timer functions available

I Usually interest in measuring two things:
I Physical Time (i.e. seconds)
I Cycles (can be converted to physical time)

Counting cycles

I Most processors keep a count of cycles they’ve been executing
for

I The current value of cycle can be read through an instruction
I RDTSC on x86 processors (Read Time Stamp Counter)

I Get cycles at beginning of region, and again at end of region,
subtract
I timer() in this case is RDTSC

I RDTSC is useful for very tiny regions of code
I Using it correctly is hard because instructions can execute

out-of-order
I Difficult to identify “beginning” and “end” of region
I Intel has a whitepaper on using RDTSC correctly

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

Timing regions

I Get time at beginning of region, and again at end of region,
subtract
I We’re hoping the region is large enough that errors due to

out-of-order execution are relatively small

I Different timer() functions to get time
I gettimeofday - returns current time of day

I DO NOT USE THIS FUNCTION FOR TIMING CODE

I clock gettime - POSIX timers
I supports multiple clocks
I for timing, use CLOCK MONOTONIC RAW on Linux
I CLOCK MONOTONIC is appropriate on other systems

Performance Counters

I Nearly every processor contains a ”Performance Monitoring
Unit” (PMU)

I Counts events happening inside the processor
I Can be used to explain performance

I Linux perf can be used to access these counters

I The Performance API library (PAPI) also provides functions to
get counters for regions of code

Data Dependences

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

v3[0] = v1[0] + v2[0];
for(i = 1; i < N; i++) {
v3[i] = v1[i] + v2[i] + v3[i-1];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I We’re adding two arrays and a running sum

I N is on the order of millions

I On my laptop, this takes around 0.026 seconds (i.e. 26
milliseconds)

Data Dependences: Rewritten

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

v3[0] = v1[0] + v2[0];
t = v3[0];
for(i = 1; i < N; i++) {
v3[i] = v1[i] + v2[i] + t;
t = v3[i];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I We’re adding two arrays and a running sum

I N is on the order of millions

I On my laptop, this takes around 0.011 seconds (i.e. 11ms)

Possible Reasons

I Although both loops have a long dependency, one is a
dependency through a register (t) and the other is through
memory (v3[i-1])

I Here is the output of ”perf stat -e

cycle activity.stalls mem any -r 10”

With v3[i]:

40,911,600 cycle_activity.stalls_mem_any (+- 1.97%)

With t:

35,815,916 cycle_activity.stalls_mem_any (+- 1.25%)

(there are lots of other events in the PMU, this is unlikely the sole
explanation)

Control Dependences

(Adapted from an example on StackOverflow)

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

// repeat to amplify effects
for(int j = 0; j < 10000; j++) {
for(i = 0; i < N; i++) {

if(p[i] >= 128)
sum = sum + p[i];

}
}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

The array p[i] contains N = 65536 random numbers between 0 to 256.

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

The two scenarios

We run the loop as is:

SORT: 0
sum: 62956660000
Time: 6.048150391s

We run the loop after sorting the array:

SORT: 1
sum: 62956660000
Time: 1.730157287s

The Branch

if(p[i] >= 128)
sum = sum + p[i];

I This branch introduces a control dependence, which adds to
sum in only 50% of the iterations.

I The CPU uses branch prediction to deal with control
dependences

I However, this branch is extremely hard to predict (it was
constructed that way!)

A simple branch predictor

NOT TAKEN correct

TAKEN

mispredictmispredict

correct

I A branch predictor can be seen as a finite-state machine with
two states
I TAKEN: the branch is predicted to be taken
I NOT TAKEN: the branch is predicted to be not taken

I The machine’s initial state can be any of these two states

I When a branch is mispredicted, the machine transitions to the
other state

I The current state is stored on a per-branch basis

Looking at branch behaviour using perf

When sorted, the branch is easy to predict – it is false in the
beginning of the array, and switches to true later:

1,317,442,105 branches # 761.098 M/sec (+- 0.00%)
384,689 branch-misses # 0.03% of all branches (+- 0.29%)

When not sorted, it is very hard to predict:

1,313,673,245 branches # 217.699 M/sec (+- 0.01%)
327,534,242 branch-misses # 24.93% of all branches (+- 0.00%)

(note: this includes all branches, including those from the loop, which are predicted well)

Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM

DRAM Organization

I Most RAM in today’s machines is Dynamic RAM (DRAM)
I Volatile, loses contents when powered off
I High density, usually requires just a transistor and a capacitor

to implement
I Dynamic, contents of “memory cell” decay with time, must be

refreshed periodically

I Organization
I DIMM (Dual Inline Memory Module, what you can purchase)
I Rank – a set of banks addressed simultaneously
I Bank – a (usually 2D) fixed size array
I Array – memory cells

DRAM Organization (contd.)

Rank

Rows

Columns

Bank Chip

Memory Controller

Channel

Addressing RAM

I Most programs only look at virtual addresses
I Addresses from 0 to 2n − 1, where n = 64 on most modern

systems

I These addresses are translated to physical addresses
I Usually 48-bits on today’s systems (about 256 TiB)
I Physical addresses go from 0 to M where M is the size of

memory in bytes

I DDR3 RAM (Double Dual Rate RAM) usually transfers 64
bits (8 bytes) of data at a time
I Called a row

https://en.m.wikipedia.org/wiki/Tebibyte

Mapping Virtual to Physical Addresses

Problem: We must take 64-bits of (linear) virtual memory address
and map it to physical memory.

I Physical memory is organized as:
I Memory Controller – interfaces CPU to memory
I Channel – path to transfer 64-bits at a time
I Rank
I Bank
I Row
I Column

Creating Addresses

I Ranks: 2

I Rows: 213

I Columns: 211

I Banks: 16

How many bits?

Example Mapping

Virtual Address

Physical Address

Chan. Column + ByteBankRowMC#

...

I Most mappings are proprietary and not documented
I General goal is to maximize bandwidth and throughput

I Usually by increasing parallelism
I Spread data over chips, so data can be collected

simultaneously from multiple chips

Matrix Multiply – IJK

I Multiplying two matrices:
I A (m × n)
I B (n × k)
I C (m × k) [result]

I Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

Performance of the two versions?

I on 1024x1024 matrices of ints

I which is faster?

I by how much?

Performance of the two versions

I on 1024x1024 matrices

I Time for IJK: 0.554 s ± 0.003s (95% CI)

I Time for IKJ: 6.618 s ± 0.032s (95% CI)

What caused the nearly 12X slowdown?

I Matrix Multiply has a large number of arithmetic operations
I But the number of operations did not change

I Matrix Multiply also refers to a large number of array
elements
I Order in which they access elements changed
I But why should this matter?

Next Class

I Caches and the Memory Hierarchy

	Recap
	More Pipeline Details
	Software and the Pipeline
	RAM

