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Cycle

I Most digital circuits operate on a clock

I Inputs are read/written on a clock pulse
I The time between two consecutive clock pulses is called a

cycle
I Shorter cycles imply higher frequencies
I A cycle is roughly a step

I Time for a circuit to do its task is usually expressed in cycles
I Number of steps to do a task

I Moore’s law allowed higher frequencies
I Same number of steps/cycles, but 2x the speed if frequency

doubled



Bypassing and Forwarding

IF ID EX MEM WB
I Results are written to register file in WB stage
I So the sequence addq %rax, %rbx ; subq %rbx, %rcx

will have to stall to allow the add to reach the WB stage
I Usually by inserting bubbles in between the two instructions



Bypassing and Forwarding

IF ID EX MEM WB

Bypass Path

I Results are bypassed (or forwarded, in time) to the next
instruction

I Now the sequence addq %rax, %rbx ; subq %rbx, %rcx
will not stall
I MEM will forward results to EX



Outline

Recap

More Pipeline Details

Software and the Pipeline

RAM



Goals: Minimize Time

T =
W × t

P

I Minimize T
I in a pipelined machine, how should we write code to minimize

T?
I how can we measure the effectiveness of our methods?



Minimizing T

I To minimize T , simplistically, we need to:
I Reduce W × t
I Increase P



The Profiler

I A profiler is a tool that tells you where most of the time in
your program is being spent

I Different levels of information reporting
I Instructions
I Lines of code
I Functions (most common reporting)

I Tools
I gprof, you must compile your code as gcc -pg [See textbook

for an extended example]
I Linux perf (with its perf record and perf report

subcommand)



Using the Profiler

I The profiler tells you which part of the code takes the most
time
I Sometimes called a “hot region”
I Often this is a loop, so called a “hot loop”

I Performance optimization usually focuses on reducing the
time for this region

I Profiler results can be used to find upper bounds on speed up
possible
I If a code takes 50% of the time, maximum speedup is 2x
I If a code takes 90% of the time, maximum speedup is 10x
I If a code takes 99% of the time, maximum speedup is 100x
I If a code takes 75% of the time, what is the maximum

speedup?



Timing Regions of Code

start = timer();
for(i = 0; i < 10000; i++) {

// loop body
}
stop = timer();
duration = start - stop;

I You can also time individual pieces of code
I Bracket the code with the correct form of timer() function

I There is no such function called timer
I There are many different timer functions available

I Usually interest in measuring two things:
I Physical Time (i.e. seconds)
I Cycles (can be converted to physical time)



Counting cycles

I Most processors keep a count of cycles they’ve been executing
for

I The current value of cycle can be read through an instruction
I RDTSC on x86 processors (Read Time Stamp Counter)

I Get cycles at beginning of region, and again at end of region,
subtract
I timer() in this case is RDTSC

I RDTSC is useful for very tiny regions of code
I Using it correctly is hard because instructions can execute

out-of-order
I Difficult to identify “beginning” and “end” of region
I Intel has a whitepaper on using RDTSC correctly

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf


Timing regions

I Get time at beginning of region, and again at end of region,
subtract
I We’re hoping the region is large enough that errors due to

out-of-order execution are relatively small

I Different timer() functions to get time
I gettimeofday - returns current time of day

I DO NOT USE THIS FUNCTION FOR TIMING CODE

I clock gettime - POSIX timers
I supports multiple clocks
I for timing, use CLOCK MONOTONIC RAW on Linux
I CLOCK MONOTONIC is appropriate on other systems



Performance Counters

I Nearly every processor contains a ”Performance Monitoring
Unit” (PMU)

I Counts events happening inside the processor
I Can be used to explain performance

I Linux perf can be used to access these counters

I The Performance API library (PAPI) also provides functions to
get counters for regions of code



Data Dependences

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

v3[0] = v1[0] + v2[0];
for(i = 1; i < N; i++) {
v3[i] = v1[i] + v2[i] + v3[i-1];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I We’re adding two arrays and a running sum

I N is on the order of millions

I On my laptop, this takes around 0.026 seconds (i.e. 26
milliseconds)



Data Dependences: Rewritten

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

v3[0] = v1[0] + v2[0];
t = v3[0];
for(i = 1; i < N; i++) {
v3[i] = v1[i] + v2[i] + t;
t = v3[i];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I We’re adding two arrays and a running sum

I N is on the order of millions

I On my laptop, this takes around 0.011 seconds (i.e. 11ms)



Possible Reasons

I Although both loops have a long dependency, one is a
dependency through a register (t) and the other is through
memory (v3[i-1])

I Here is the output of ”perf stat -e

cycle activity.stalls mem any -r 10”

With v3[i]:

40,911,600 cycle_activity.stalls_mem_any ( +- 1.97% )

With t:

35,815,916 cycle_activity.stalls_mem_any ( +- 1.25% )

(there are lots of other events in the PMU, this is unlikely the sole
explanation)



Control Dependences

(Adapted from an example on StackOverflow)

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

// repeat to amplify effects
for(int j = 0; j < 10000; j++) {
for(i = 0; i < N; i++) {

if(p[i] >= 128)
sum = sum + p[i];

}
}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

The array p[i] contains N = 65536 random numbers between 0 to 256.

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array


The two scenarios

We run the loop as is:

SORT: 0
sum: 62956660000
Time: 6.048150391s

We run the loop after sorting the array:

SORT: 1
sum: 62956660000
Time: 1.730157287s



The Branch

if(p[i] >= 128)
sum = sum + p[i];

I This branch introduces a control dependence, which adds to
sum in only 50% of the iterations.

I The CPU uses branch prediction to deal with control
dependences

I However, this branch is extremely hard to predict (it was
constructed that way!)



A simple branch predictor

NOT TAKEN correct

TAKEN

mispredictmispredict

correct

I A branch predictor can be seen as a finite-state machine with
two states
I TAKEN: the branch is predicted to be taken
I NOT TAKEN: the branch is predicted to be not taken

I The machine’s initial state can be any of these two states

I When a branch is mispredicted, the machine transitions to the
other state

I The current state is stored on a per-branch basis



Looking at branch behaviour using perf

When sorted, the branch is easy to predict – it is false in the
beginning of the array, and switches to true later:

1,317,442,105 branches # 761.098 M/sec ( +- 0.00% )
384,689 branch-misses # 0.03% of all branches ( +- 0.29% )

When not sorted, it is very hard to predict:

1,313,673,245 branches # 217.699 M/sec ( +- 0.01% )
327,534,242 branch-misses # 24.93% of all branches ( +- 0.00% )

(note: this includes all branches, including those from the loop, which are predicted well)
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DRAM Organization

I Most RAM in today’s machines is Dynamic RAM (DRAM)
I Volatile, loses contents when powered off
I High density, usually requires just a transistor and a capacitor

to implement
I Dynamic, contents of “memory cell” decay with time, must be

refreshed periodically

I Organization
I DIMM (Dual Inline Memory Module, what you can purchase)
I Rank – a set of banks addressed simultaneously
I Bank – a (usually 2D) fixed size array
I Array – memory cells



DRAM Organization (contd.)

Rank

Rows

Columns

Bank Chip

Memory Controller

Channel



Addressing RAM

I Most programs only look at virtual addresses
I Addresses from 0 to 2n − 1, where n = 64 on most modern

systems

I These addresses are translated to physical addresses
I Usually 48-bits on today’s systems (about 256 TiB)
I Physical addresses go from 0 to M where M is the size of

memory in bytes

I DDR3 RAM (Double Dual Rate RAM) usually transfers 64
bits (8 bytes) of data at a time
I Called a row

https://en.m.wikipedia.org/wiki/Tebibyte


Mapping Virtual to Physical Addresses

Problem: We must take 64-bits of (linear) virtual memory address
and map it to physical memory.

I Physical memory is organized as:
I Memory Controller – interfaces CPU to memory
I Channel – path to transfer 64-bits at a time
I Rank
I Bank
I Row
I Column



Creating Addresses

I Ranks: 2

I Rows: 213

I Columns: 211

I Banks: 16

How many bits?



Example Mapping

Virtual Address

Physical Address

Chan. Column + ByteBankRowMC#

... ... ...

I Most mappings are proprietary and not documented
I General goal is to maximize bandwidth and throughput

I Usually by increasing parallelism
I Spread data over chips, so data can be collected

simultaneously from multiple chips



Matrix Multiply – IJK

I Multiplying two matrices:
I A (m × n)
I B (n × k)
I C (m × k) [result]

I Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Performance of the two versions?

I on 1024x1024 matrices of ints

I which is faster?

I by how much?



Performance of the two versions

I on 1024x1024 matrices

I Time for IJK: 0.554 s ± 0.003s (95% CI)

I Time for IKJ: 6.618 s ± 0.032s (95% CI)



What caused the nearly 12X slowdown?

I Matrix Multiply has a large number of arithmetic operations
I But the number of operations did not change

I Matrix Multiply also refers to a large number of array
elements
I Order in which they access elements changed
I But why should this matter?



Next Class

I Caches and the Memory Hierarchy
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