
CSC2/452 Computer Organization
Using Virtual Memory

Sreepathi Pai

URCS

November 6, 2019



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



Administrivia

I Assignment #3 is due Nov 8, 2019 at 7PM

I Homework #5 is due Monday, Nov 11

I Assignment #4 will be out Monday, Nov 11
I Mid-term grades are out

I HW+A1+A2+Midterm is 42% of grade
I 58% still due!



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



Virtual Memory

I Virtual address space

I Physical address space

I All loads/stores use virtual addresses
I MMU translates virtual addresses to physical addresses

I Uses page tables
I On 64-bit x86, 4 levels of page tables

I Page tables allow pages to not be present in memory!
I Loads/stores to such pages trigger page faults
I OS can handle these page faults



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



The Revised Memory Hierarchy

L1 Cache (L1$)

L2 Cache (L2$)

Mem. Ctrller

RAM

to LS/U
CPU

Disk



Programs and Virtual Memory

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Each block corresponds to a page
I Process A has 6 pages, Process B has 7 pages

I Physical memory can accommodate 10 pages
I Disk can accommodate as many pages as it has space

I Depends on OS

I Shaded blocks indicate pages swapped out



Loading Process B

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Assume Process B is being loaded for the first time
I Or maybe it was completely swapped out

I Only one page has been loaded

I From the perspective of the memory hierarchy, all data is
initially on disk



Defragmenting Virtual Memory
Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I This slide demonstrates that you can change virtual to
physical mappings
I Here, for physical pages belonging to process A have been

moved

I “Defragmentation” allows larger, physically contiguous chunks
to be assigned to the same process
I Can improve performance and allocator behaviour



Loading Process B

Should we load all pages from disk to memory at once?

I Will Process B access all the pages?
I Do you use all the functionality of most programs in a single

run?



Demand Paging

I OS simply marks pages as belonging to process B
I but marks them all as not present

I When Process B accesses a page for the first time, it triggers
a fault
I OS then loads the page from disk



Paging Process B in (2 pages)

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM



Paging Process B in (3 pages)

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM



Paging Process B in (6 pages)

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I In this case, B is accessing all pages
I No more free physical pages

I Which page should we kick out?



Which page to throw out?

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Same problem as cache replacement
I Similar solutions

I LRU is often used



Context switch back to Process A

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Process A is now active and brought the recently kicked out
page back in
I Bad luck on replacement!

I We throw out a page from Process B



Context switch again

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Process B is now active and brought its recently kicked out
page back in
I More bad luck on replacement!

I We throw out a page from Process A

I Ad infinitum?



(Disk/VM) Thrashing

I When physical memory is full and
I OS spends more time swapping pages in and out than actually

running programs
I Replacement policy is not picking the right pages

I Happens because of oversubscription
I More virtual pages than physical RAM can accommodate



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



Traditional File I/O

f = fopen(argv[1], "r");
if(f) {
while(!feof(f)) {

c = fgetc(f);
if(c == EOF) break;

if(c >= ’A’ && c <= ’Z’) {
counter[c - ’A’]++;

}
}

}

I Open file using fopen

I Read data using fgetc (or fread, fscanf, etc.)



Memory Mapped I/O for Files

I Recall that disk is part of the virtual memory system

I Files are on disk

I Can we use the virtual memory subsystem to read/write files?



Functionality needed

I Ask OS (i.e. virtual memory subsystem) to read a file into a
bunch of pages

I Use pointers to read/write the data in the pages directly

I Save changed data back to disk



The mmap function
int fd = fileno(f);
struct stat st;
char *data;

if(fstat(fd, &st) == 0) {
data = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
if(data) {

int i;
for(i = 0; i < st.st_size; i++) {

if(*data >= ’A’ && *data <= ’Z’) {
counter[*data - ’A’]++;

}
data++;

}
}

I The mmap function allows you to do map files into memory
I Also supports other functionality such as allocation

I Use fopen as usual, but convert FILE to a file descriptor
understood by OS (fileno)
I Or use open to get a file descriptor in the first place

I Use fstat to obtain the size of the file

I Call mmap to map data from the file into memory



Examining mmap
data = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);

I First argument (NULL), which virtual address to map file to
I NULL specifies any address is okay

I Second argument (st.st size) is size of file
I This will be rounded up to page size

I Third argument (PROT READ) opens the data in read-only
mode
I Attempting to write will cause a page fault

I Fourth argument (MAP SHARED) makes all writes visible
immediately to other processes who have opened this file
using mmap
I In this case, writes by other processes will be visible to this

program

I Fifth argument (fd) gives the file descriptor
I Sixth argument (0) gives the offset from which the data must

be loaded
I 0 is the first byte of the file



Private copies vs shared copies

data = mmap(NULL, st.st_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);

I A MAP PRIVATE flag maps a file privately
I Changes are not visible to other processes

I And are also not written through to the file being mapped



How shared mmap works

Process A

Process B

Virtual Address Space

Virtual Address Space

Physical Address Space

0

0

0

x

y

z

DISK

RAM

I Green blocks are shared pages
I Same file mmap’ed by two different processes

I Same physical pages
I Different virtual addresses per process

I But could be the same



Unmapping files

munmap(data, st.st_size);

I munmap removes the page mapping
I Here, all pages in addresses from data to data + st.st size
I Future accesses to the page will cause segfaults
I All changes are written to disk

I You can remove individual page from the mapping
I Just change the pointer and the size

I All mapped regions are automatically unmapped when the
process ends



Writing to pages

I When you munmap, all changed pages must be flushed to disk
I OS can also periodically flush changes to disk

I This makes writes to mmap’ed files visible to processes using
traditional file-based I/O
I Note, writes are always immediately visible to other processes

using mmaped I/O

I Two issues:
I How does the OS track changed pages?
I Can we control flushing to disk?



Dirty pages

I A page with changed data is called a “dirty” page

I This page must be written to disk eventually

I How can the OS track dirty pages efficiently?



Mechanism

I Assume a file is mapped with PROT WRITE

I When data is first mapped, its protection is set to read only
I Regardless of PROT WRITE

I On first write, page fault occurs
I OS detects the page fault, and marks page as dirty

I Is there a bit in the PTE it could use?
I Also enables write permission for page
I Future writes will not cause segfaults
I Note on x86 – the dirty bit is set by hardware, but cleared by

software

I Ultimately, pages that are marked dirty need to be flushed to
disk
I Dirty bit is reset and write permission removed

I What about unchanged pages?



Flushing data to disk

msync(data, st.st_size, MS_SYNC);

I msync forces the OS to write changed data back to disk
I Note only changed pages are written

I The flag MS SYNC causes it to wait until all data is actually on
disk



Prefetching

madvise(data, st.st_size, MADV_SEQUENTIAL);

I Provides hints to the OS on the order in which you will
read/write data

I This affects OS-level prefetching of pages

I It also affects page replacement policy
I For example, MADV SEQUENTIAL will:

I prefetch pages in sequential order
I throw away pages (since there will be no reuse)



Anonymous Pages

data = mmap(NULL, 1048576, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

I MAP ANONYMOUS allocates pages
I Like malloc
I Actually used by malloc under the hood

I Here, we’re allocating 1MB of memory not backed by a file
I Note, for anonymous mappings:

I fd should be -1
I offset should be 0



Fixed Address Pages

data = mmap(0x7ffff0001000, 1048576, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

I You can provide a fixed address to mmap (both anonymous
and non-anonymous)

I This allows you to control which addresses you use
I If this call succeeds, data will contain 0x7ffff0001000

I Can fail



Outline

Administrivia

Recap

Physical Memory Management

File I/O using mmap

Manipulating pages



Change page protections

data = mmap(..., PROT_READ | PROT_WRITE, ...);
...
mprotect(data, st.st_size, PROT_READ)

I mprotect allows you to change permissions for pages after
you’ve loaded them.
I Here, all pages in address range data to data + st.st size

I You can:
I remove all permissions (PROT NONE)
I change some pages to executable (PROT EXEC)



Locking pages

What if you want to prevent pages from being swapped out?

I Maybe you want good performance?

I Maybe the page contains secret data that you don’t want
written to disk?



The mlock/munlock functions

mlock(data, 4096);

I If successful, mlock prevents the pages in the address range
data to data + 4096.
I Why could this fail?



References and Acknowledgements

I The GNU libc Manual
I Portions of Chapter 3 (3.1: Process Memory Concepts)
I Portions of Chapter 13 (13.8: Memory-mapped I/O)
I See References on the course website for the manual

I Chapter 9 of the textbook

https://www.cs.rochester.edu/~sree/courses/csc-252-452/fall-2019/reference.html

	Administrivia
	Recap
	Physical Memory Management
	File I/O using mmap
	Manipulating pages

