CSC2/452 Computer Organization
Threading and Parallelism

Sreepathi Pai
URCS

November 18, 2019

Outline

Administrivia

Recap

Threading Concepts

PThreads

Hardware Support for Concurrency

Outline

Administrivia

Administrivia

> Assignment #4 is out
» Due date: Tuesday, Nov 26, 7PM

» Assignment #5 (last!) will be out Dec 2
» Due on Dec 11

Outline

Recap

Process-based Concurrency

» Create multiple processes to handle multiple "work items” (or
requests)
» fork is cheap
» Resources (CPU, Memory) managed by OS
» Use OS-based interprocess communication (IPC) mechanisms
to communicate
» Shared memory

» Semaphores (Named and unnamed)
> Files/Pipes, etc.

Some properties of process-based concurrency

» Each process is isolated from the other

» By design

» “Shared nothing” concurrency
» Processes have to opt-in to share data

> Must use OS services (i.e. system calls) to do so
» Cost of sharing mechanisms can vary

» Some are cheap like mmap
» Others are less cheap, like semaphores

Where is process-based concurrency used?

> Web Browsers
» Each tab of your web browser is a separate process
» Security? Reliability?

» Distributed Computing
» The processes are usually not on the same machine
» Remote procedure calls (RPC)
» e.g., SETIGHOME or Folding@HOME
» e.g., nearly every website

» High-performance Cluster Computing

» A cluster is a connected network of computers

> One of the many possible designs for supercomputers (but
most popular right now)

» “Message-passing”

An alternative: Thread-based parallelism

» Thread-based parallelism

» Notion of a “thread of execution”
» A thread is nearly always just a program counter + stack
» Compare to process which has its own address space, etc.

» Also called “shared memory parallelism”
» All threads share the same address space

» Each thread can read/write other threads data directly
» Without going through the OS

Two prominent implementations of threading

» User-mode threading
» Threads are invisible to OS
» OS only sees a process
» Process manages creation, termination and scheduling of
threads

» OS-level threading

» Threads are visible to OS
» OS sees both processes and threads

» Process uses OS facilities to create and terminate threads
» OS schedules threads

Our focus today: OS-level threading

» OS-level threading is supported in Unix-like systems through
POSIX Threads

» Usually referred to as pthreads
» You need to link your program with 1ibpthread
» gcc -pthread yourfile.c

Outline

Threading Concepts

Threads Concepts

P> Threads are created using pthread create

> Processes created using fork/execve
» Each thread has a unique thread ID (within the process)

> A new thread starts at a specified function

> A fork starts at instruction after call to fork
P> execve starts in main

> A thread exits using pthread_exit

» This terminates the process only if this was the last thread
» Threads can wait for each other using pthread_join

> Just like waitpid

Advantages of threads

» Very lightweight (compared to processes)
» Share the same address space as other threads
> Same (global) data and heap
» So all global variables and malloc'ed data is shared by default
> But different stacks, so all function-local variables are still
private
» Threads can read/write each others data directly
» Using load/store instructions

Disadvantages of threads

» Share the same address space as other threads
» Same (global) data and heap
» So all global variables and malloc'ed data is shared by default
> But different stacks, so all function-local variables are still
private

» Threads can read/write each others data directly

» “Shared everything”
» No protection
» Programmers must carefully control access to all shared data

Issues with Shared Everything: Thread safety

» If you're writing a program using pthreads, you're aware of
what data is shared and not in your code

» And you will use mutual exclusion mechanisms to correctly
order accesses to shared data

» But what about all the code written by others that you're
using?
> e.g. printf, fopen, etc.
» Some of these functions were designed in a pre-threads world
» Do they store internal data that might inadvertently be shared
by multiple threads?

The rand Function

#include <stdlib.h>
int rand(void);

void srand(unsigned int seed);

» The rand function returns a (pseudo-)random value

» The srand function sets the seed for the next invocation of
rand

» The same seed produces the same random number sequence

» How does srand communicate the seed value to rand?

One possible implementation

unsigned int glseed;

void srand(unsigned int seed) {
glseed = seed;
}

int rand() {

. read glseed to produce next random number ...
. store next random number in glseed ...

» This implementation uses global variables (i.e. glseed) to
communicate the seed from srand to rand

» What will happen when rand is called by different threads?

Thread Unsafe Functions

» A thread unsafe function is a function that is not designed to
be called (at the same time) by multiple threads
» Some functions in C and POSIX cannot be used in a
thread-safe manner
» A list of such functions is available in the pthreads manual

page
» They usually have thread-safe replacements, e.g. rand_r for
rand

Thread-Safe Functions

int rand_r(unsigned int *seedp);

» A thread-safe function is a function that can be safely called
(at the same time) by multiple threads

» Unless explicitly noted, functions in C and POSIX are required
to thread-safe

» The manual page for each function contains a note on this
(e.g. “MT-Safe")
> Common strategy is to expose any hidden state to the user
» e.g., rand_r takes the seed as input

Thread Unsafe Data

#include <errno.h>

int errno;

» The errno global variable contains the error code of the last
system or library call

» If two threads both encounter an error, what should the value
of errno contain?

Thread-safe data

» Newer versions of POSIX redefine errno to be thread-specific
global data

P instead of process-specific global data

» Each thread gets its own copy of errno

A related concept: Re-entrant Functions

> A re-entrant function is a function that can be “re-entered”
even when another call to it is in progress

» POSIX calls these “async-signal-safe”
» A program installs a signal handler for SIGCHLD

» [t then calls printf in main

» But while printf is executing, you receive the signal

» And in the signal handler you call printf to print a debug
message

» What happens to the first printf call still in progress?

P> Note: no threads are used in this example

Undefined behaviour

» None of the functions in stdio.h are re-entrant

» Invoking any of these functions when a call is in progress (in
the same thread) results in undefined behaviour
» However, printf is thread safe (required since C11)
» |t can be called even when a call is in progress in a different
thread
» All re-entrant functions are thread safe IF called on
thread-private data

» Not all thread-safe functions are re-entrant
» Usually applies when writing signal handlers

Writing Thread-Safe Functions

» Thread-unsafe functions access shared data without
synchronization
» Therefore, to make a function thread safe, add
synchronization
P e.g. use semaphores for mutual exclusion

Writing Re-entrant Functions

» Re-entrant functions should not use synchronization
» Re-entrant functions must only access data that is:
» 3 function-local variable, or
P an argument passed to the function
» Re-entrant functions are also thread safe if their arguments
are thread-private

» Shared data as arguments would violate thread-safety because
re-entrant functions do not use synchronization

Pitfalls of Threads

» Synchronization and ordering must be used for correctness
» Similar to processes
» Shared by default data

> All global variables and malloc
» All pointers are in the same address space

» Must only use thread-safe functions

» Or re-entrant functions with thread-private data
» A consequence of shared everything...

Outline

PThreads

Sum of n numbers, using threads

/* holds arguments to thread function */
struct thread_arg {

int i;

int *a;

int N;

int NPERTHREAD;

atomic_uint *sum;

pthread_t tid;
};

void *tsum(void *arg) {
struct thread_arg *ta = (struct thread_arg *) arg;

printf("In thread %d, adding array elements from %d\n", ta->i,
ta->i * ta->NPERTHREAD);

for(int j = ta->i * ta->NPERTHREAD;
j < (ta->i * ta->NPERTHREAD + ta->NPERTHREAD) && j < ta->N; j++) {
*ta->sum += ta->al[jl;

}

printf("In thread %d, sum is %d\n", ta->i, *ta->sum);
pthread_exit (NULL) ;

Code explanation

» Thread entry functions (here tsum) can only accept a single
void * argument
> We use that to send a structure containing all the arguments

» We could avoid this in fork because child processes would
start after fork in main

» But now, the thread will start in tsum, which has no access to
variables in main

» The code within tsum is not much altered from the code in
the fork () variant
» Except all arguments are read from the ta structure
» Note the void * return type of thread function

» This function calls pthread_exit explicitly

» If you used return instead, pthread_exit would be called
implicitly with the return value: return NULL is equivalent to
pthread_exit (NULL)

Threads: Initializing arguments

atomic_uint sum = 0;
NPERTHREAD = (N+nthread-1)/nthread;

struct thread_arg *ta = calloc(nthread, sizeof(struct thread_arg)

for(int i = 0; i < nthread; i++) {
tal[i].a = a;
ta[i] .NPERTHREAD = NPERTHREAD;
tal[i] .N = N;
tal[i] .sum = ∑

}

Threads: Creating threads

/* loop that creates threads */
for(int i = 0; i < nthread; i++) {
tal[i] .i=1i;
if (pthread_create(&tal[i] .tid, NULL, tsum, &tal[i]) != 0) {
fprintf(stderr, "ERROR: Failed to create thread\n");
exit(1);
}
}

Threads: Waiting for threads

int s = 0;
void *res;
for(int i = 0; i < nthread; i++) {
s = pthread_join(ta[i].tid, &res);
if(s 1= 0) {
fprintf (stderr, "ERROR: Could not join\n");
exit(2);
}
}

printf("In main, sum is %d\n", sum);

Synchronization

» Semaphores can still be used with threads
> sem_init, sem_wait, and sem_post
» But PThreads also offers other synchronization mechanisms

> Mutexes: pthread mutex_init, ...
» Barriers: pthread_barrier_init, ...
» Condition variables: pthread cond_signal, ...

Mutexes

» Like binary semaphores

» Call pthread mutex_init to initialize a mutex variable
» All threads wishing to enter a critical section call
pthread mutex_lock on a shared mutex variable

» This attempts to “obtain a lock”
» |t will wait if the lock is already taken by another thread

> A thread that has the lock will call pthread mutex_unlock
to exit the critical section
» One of the waiting threads will then be allowed in

Barriers

» Barriers cause threads to wait until a pre-determined number
of threads arrive at the barrier

» Usually, the number of threads is all the threads

» Barriers are commonly used to order phases of program
execution

» Each thread executes a phase independently, and then waits
for all other threads to complete the phase before moving to
the next

» Call pthread barrier_init to initialize a barrier variable
» You need to specify the number of threads

» Each thread calls pthread _barrier_wait on the barrier
variable

» This will force thread to wait until all other threads reach the
barrier

» When the last thread arrives at the barrier, all threads proceed

Condition Variables

» Condition variables allow threads to wait for condition to be
true
> Efficient alternative to “spinning” (i.e. a loop that constantly
checks a variable)
P> A threads locks a mutex, and waits on a condition variable
that becomes associated with that mutex
» The mutex is unlocked and the thread put to sleep in one
atomic action
» When the condition becomes true, the thread wakes after the
lock is re-acquired
» Example: Producer puts item in queue, consumer thread wakes
up and can immediately dequeue it

P> A thread can “wake up” the waiting threads by “signalling”
the condition

Condition Variables: API

» Call pthread_cond_init to initialize a condition variable
> A thread calls pthread_cond_wait on the condition variable
and a mutex
» This causes it to wait until condition variable is “signalled”
> A thread calls pthread_cond_signal to wake up waiting
threads

» Wakes up one thread
» Can also call pthread_cond _broadcast to wake up all waiting
threads

Outline

Hardware Support for Concurrency

Multiple Processors and Cores

» You can run concurrent code on a system with 1 processor
» Thanks to time sharing

» But most computers have multiple cores today
» Each core is an independent computational unit

» Systems can also have multiple processors

» Each processor contains multiple cores
» Rare in consumer-grade systems

Mapping Processes and Threads to Cores

» The OS scheduler maps processes and threads to cores

» It is possible to “pin” threads/processes to certain cores
» Avoids scheduling overhead
» Can improve performance in some situations

» On Linux, the sched_setaffinity function allows you to set
thread affinities

» Can also use the pthread _setaffinity np function

A Sneak Peek at Cache Coherence

P Recall that caches contain copies of data variables
» This is fine when only one process/thread is accessing the data
» What happens when different threads access shared data?

» Core 1 has shared variable sum in its cache
> Will Core 2 try to get sum from memory?

Cache

Coherence

Cache coherence is a hardware mechanism to locate copies of
a piece of data and use the “latest” version

» Usually, the last written version
Core 2 will send a request for sum
» Core 1 will reply to that request
» RAM may also reply, but Core 1 has more recent version and
will be used by Core 2
Coherence protocols also prevent multiple cores from writing
to the same piece of data

Cache coherence is covered in CS2/458, and also in C52/451
and (possibly) ECE404

References

» Chapter 12
> Except 12.2 (/O Multiplexing)

	Administrivia
	Recap
	Threading Concepts
	PThreads
	Hardware Support for Concurrency

