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Administrivia

I A5 (final assignment) is out
I Due Dec 11, 2019 at 7PM
I Groups of up to 2 allowed

I Homeworks all done
I Please review all of them and their solutions

I Two review lectures next week
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Accelerators

I Single-core processors

I Multi-core processors

I What if these aren’t enough?
I Accelerators, specifically GPUs

I what they are
I when you should use them



Timeline

I 1980s
I Geometry Engines

I 1990s
I Consumer GPUs
I Out-of-order Superscalars

I 2000s
I General-purpose GPUs
I Multicore CPUs
I Cell BE (Playstation 3)
I Lots of specialized accelerators in phones



The Graphics Processing Unit (1980s)

I SGI Geometry Engine
I Implemented the Geometry Pipeline

I Hardwired logic

I Embarrassingly Parallel
I O(Pixels)
I Large number of logic elements
I High memory bandwidth

I From Kaufman et al. (2009):



GPU 2.0 (circa 2004)

I Like CPUs, GPUs benefited from Moore’s Law

I Evolved from fixed-function hardwired logic to flexible,
programmable ALUs

I Around 2004, GPUs were programmable “enough” to do some
non-graphics computations
I Severely limited by graphics programming model (shader

programming)

I In 2006, GPUs became “fully” programmable
I GPGPU: General-Purpose GPU
I NVIDIA releases “CUDA” language to write non-graphics

programs that will run on GPUs



FLOPS/s

NVIDIA CUDA C Programming Guide



Memory Bandwidth

NVIDIA CUDA C Programming Guide



GPGPU Today

I GPUs are widely deployed as
accelerators

I Intel Paper
I 10x vs 100x Myth

I GPUs so successful that
other accelerators are dead
I Sony/IBM Cell BE
I Clearspeed RSX

I Tesla V100S GPUs from
NVIDIA have performance
of 16.4TFlops (peak)
I CM-5, #1 system in 1993

was 60 Gflops (Linpack)
I ASCI White (#1 2001)

was 4.9 Tflops (Linpack)
Pictures of Summit and Tianhe 1A from the Top500 website.



Accelerator Programming Models

I CPUs have always depended on co-processors
I I/O co-processors to handle slow I/O
I Math co-processors to speed up computation
I H.264 co-processor to play video (Phones)
I DSPs to handle audio (Phones)

I Many have been transparent
I Drop in the co-processor and everything sped up

I Or used a function-based model
I Call a function and it is sped up (e.g. “decode video”)

I The GPU is not a transparent accelerator for general purpose
computations
I Only graphics code is sped up transparently

I Code must be rewritten to target GPUs



Using a GPU

I You must retarget code for the GPU
I Rewrite, recompile, translate, etc.
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The Two Kinds of GPUs

I Type 1: Discrete GPUs
I More computational power
I More memory bandwidth
I Separate memory

NVIDIA



The Two Kinds of GPUs #2

I Type 2: Integrated GPUs
I Share memory with processor
I Share bandwidth with processor
I Consume Less power
I Can participate in cache coherence

Intel



The NVIDIA Kepler

NVIDIA Kepler GK110 Whitepaper



Using a Discrete GPU

I You must retarget code for the GPU
I Rewrite, recompile, translate, etc.

I Working set must fit in GPU RAM
I You must copy data to/from GPU RAM

I “You”: Programmer, Compiler, Runtime, OS, etc.
I Some recent hardware can do this for you (it’s slow)



NVIDIA Kepler SMX (i.e. CPU core equivalent)



NVIDIA Kepler SMX Details

I 2-wide Inorder
I 4-wide SMT

I 2048 threads per core (64 warps)
I 15 cores
I Each thread runs the same code (hence SIMT)

I 65536 32-bit registers (256KBytes)
I A thread can use upto 255 of these
I Partitioned among threads (not shared!)

I 192 ALUs

I 64 Double-precision

I 32 Load/store

I 32 Special Functional Unit
I 64 KB L1/Shared Cache

I Shared cache is software-managed cache



CPU vs GPU

Parameter CPU GPU
Clockspeed > 1 GHz 700 MHz

RAM GB to TB 12 GB (max)

Memory B/W 60 GB/s > 300 GB/s

Peak FP < 1 TFlop > 1 TFlop

Concurrent Threads O(10) O(1000)
[O(10000)]

LLC cache size > 100MB (L3)
[eDRAM] O(10)
[traditional]

< 2MB (L2)

Cache size per thread O(1 MB) O(10 bytes)

Software-managed cache None 48KB/SMX

Type OOO super-
scalar

2-way Inorder su-
perscalar



Using a GPU

I You must retarget code for the GPU
I Rewrite, recompile, translate, etc.

I Working set must fit in GPU RAM
I You must copy data to/from GPU RAM

I “You”: Programmer, Compiler, Runtime, OS, etc.
I Some recent hardware can do this for you

I Data accesses should be streaming
I Or use scratchpad as user-managed cache

I Lots of parallelism preferred (throughput, not latency)
I SIMD-style parallelism best suited

I Same instruction, different data

I High arithmetic intensity (FLOPs/byte) preferred



Showcase GPU Applications

I Image Processing

I Graphics Rendering

I Matrix Multiply

I FFT
See “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU” by V.W.Lee et al. for more examples and a comparison of CPU
and GPU.
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Hierarchy of GPU Programming Models

Model GPU CPU Equivalent
Vectorizing Compiler PGI CUDA Fortran gcc, icc, etc.

“Drop-in” Libraries cuBLAS ATLAS

Directive-driven OpenACC,
OpenMP-to-CUDA

OpenMP

High-level languages pyCUDA python

Mid-level languages OpenCL, CUDA pthreads +
C/C++

Low-level languages PTX, Shader -

Bare-metal SASS Assembly/Machine
code



“Drop-in” Libraries

I “Drop-in” replacements for
popular CPU libraries,
examples from NVIDIA:
I CUBLAS/NVBLAS for

BLAS (e.g. ATLAS)
I CUFFT for FFTW
I MAGMA for LAPACK

and BLAS

I These libraries may still
expect you to manage data
transfers manually

I Libraries may support
multiple accelerators (GPU
+ CPU + Xeon Phi)



GPU Libraries

I NVIDIA Thrust
I Like C++ STL, but

executes on the GPU

I Modern GPU
I At first glance:

high-performance library
routines for sorting,
searching, reductions, etc.

I A deeper look: Specific
“hard” problems tackled
in a different style

I NVIDIA CUB
I Low-level primitives for

use in CUDA kernels



Directive-Driven Programming

I OpenACC, new standard for “offloading” parallel work to an
accelerator
I Currently supported only by PGI Accelerator compiler
I gcc 5.0 support is ongoing

I OpenMPC, a research compiler, can compile OpenMP code +
extra directives to CUDA
I OpenMP 4.0 also supports offload to accelerators
I Not for GPUs yet

int main(void) {
double pi = 0.0f; long i;

#pragma acc parallel loop reduction(+:pi)
for (i=0; i<N; i++) {

double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);

}

printf("pi=%16.15f\n",pi/N);
return 0;

}



Python-based Tools (pyCUDA)
import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule

mod = SourceModule(""\"
__global__ void multiply_them(float *dest, float *a, float *b)
{

const int i = threadIdx.x;
dest[i] = a[i] * b[i];

}
""\")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(
drv.Out(dest), drv.In(a), drv.In(b),
block=(400,1,1), grid=(1,1))

print dest-a*b



OpenCL

I C99-based dialect for programming heterogenous systems
I Originally based on CUDA
I nomenclature is different

I Supported by more than GPUs
I Xeon Phi, FPGAs, CPUs, etc.

I Source code is portable (somewhat)
I Performance may not be!

I Poorly supported by NVIDIA



CUDA

I “Compute Unified Device Architecture”
I First language to allow general-purpose programming for

GPUs
I preceded by shader languages

I Promoted by NVIDIA for their GPUs
I Not supported by any other accelerator

I though commercial CUDA-to-x86/64 compilers exist

I We will focus on CUDA programs



CUDA Architecture

I From 10000 feet – CUDA is like pthreads
I CUDA language – C++ dialect

I Host code (CPU) and GPU code in same file

I Special language extensions for GPU code
I CUDA Runtime API

I Manages runtime GPU environment
I Allocation of memory, data transfers, synchronization with

GPU, etc.
I Usually invoked by host code

I CUDA Device API
I Lower-level API that CUDA Runtime API is built upon



CUDA Limitations

I No standard library for GPU functions

I No parallel data structures
I No synchronization primitives (mutex, semaphores, queues,

etc.)
I you can roll your own
I only atomic*() functions provided

I Toolchain not as mature as CPU toolchain
I Felt intensely in performance debugging

I It’s only been a decade :)



Conclusions

I GPUs are very interesting parallel machines
I They’re not going away

I Xeon Phi was interesting, but Intel has abandoned it

I They’re here and now
I Your laptop probably already contains one
I Your phone definitely has one
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References

I NVIDIA CUDA
I http://docs.nvidia.com
I Start with the CUDA C++ Programming Guide

I OpenCL
I https://www.khronos.org/opencl/
I The OpenCL C 2.0 Specification
I The OpenCL C++ 1.0 Specification

http://docs.nvidia.com
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Cxx.html
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