
CSC2/452 Computer Organization
Integer Arithmetic, Real Numbers

Sreepathi Pai

URCS

September 14, 2022



Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



Homeworks

I Homework due today in class (in box)

I Homework #2 is out today (due next Wednesday)

I Assignment #1, on bitwise operations will be out by end of
week



Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



What we have in our digital universe so far

I Two bits: 0 and 1

I Lots (but finite) of bitwise operations: AND, OR, NOT, XOR,
...

I Bit-level data structures
I Bitsets
I Bitfields

I Integers
I A bitfield consisting of “sign” and ”magnitude”
I Many representations (sign-magnitude, one’s complement,

two’s complement, ...)



Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



Integer operations

I So far we’ve looked at bitwise operations
I But for integers, we need familiar arithmetic operations

I Addition, Subtraction, Multiplication, Division
I Comparison operations (greater than, less than)

I We will investigate:
I How to implement these operations using bitwise operations
I How working with a finite number of bits can lead to surprises

and non-mathematical behaviour



Comparisons: Decimal Numbers

I Which is greater?

N1 N2 N1 > N2?

13789 00123

13789 14000

-3459 -0200

+3400 -3450

I What algorithm did you use (in your head)?



Comparisons: Binary Numbers

I Which is greater?
I Assume 5 bit numbers
I Highest bit is sign
I Magnitude (4 bits) uses two’s complement

N1 N2 N1 > N2?

01001 00101

01001 01010

11010 10001

01000 11000

I How did you handle cases where:
I both numbers were positive?
I both numbers were negative?
I numbers with different signs?



Comparing two binary numbers a and b

I Assume two’s complement representation

I Compare sign bits
I If equal, with sign bit = 0 (positive)

I Search for first high bit that differs
I If such a bit exists, a > b if a has a 1 bit in that position

I If equal, with sign bit = 1 (negative)
I Search for first high bit that differs
I If such a bit exists, a > b if a has a 1 bit in that position

I If not equal,
I a > b if a’s sign bit is 0



How to compare bits

a b Output

0 0 1

0 1 0

1 0 0

1 1 1

I In C code, what are OP1 and OP2?
equal_bits = OP1(a OP2 b)



Pseudocode for Compare
bitequal(bit a, bit b) {

return ~(a ^ b);
}

compare(num a, num b) {
if(bitequal(signbit(a), signbit(b)) {
tmp = a ^ b; // clears all bits that are the same to 0

if(tmp == 0)
printf("a == b");

else {
pos = highest_one_bit(tmp);
if(bitequal(signbit(a), signbit(b)))

// a and b have the same sign
if(bitequal(getbit(a, pos), 1))

print("a > b"); // a has highest 1 bit
else

print("b > a"); // b has highest 1 bit
else

if(bitequal(signbit(a), 0))
print("a > b"); // a is +ve, b is -ve

else
print("b > a"); // a is -ve, b is +ve

}
}



In hardware

I In hardware this is implemented as a boolean circuit

I Collection of boolean gates

I Take ECE112 to learn more

I We will treat these as boxes (examples ahead)
I But we want to know how to do it in software

I Even if it is slower



Binary Addition

I Note both Sum and Carry are outputs

a b Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

I In C code, what are OP1 and OP2?
sum = a OP1 b;
carry = a OP2 b;



Binary Addition with Incoming Carry

I Note both Sum and Carry are outputs

Carryin a b Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

I In C code:
sum =
carry =



The Full Adder in Hardware (kinda)

I A, B, pairs of input bits

I Cin is carry in bit

I Cout is carry out bit

I S is sum bit

I Image Source: English Wikipedia, user:Cburnett,
CC-BY-SA 3.0



Chaining the Full Adder

I gn indicate this sum generates a carry (e.g. 1 + 1)

I pn indicates if this sum will propagate an incoming carry (e.g.
A = 1 and B = 0)

I Image Source: English Wikipedia, user:Cburnett,
CC-BY-SA 3.0



Buying a Full Adder

I You can get a hardware full adder as an integrated circuit for
a few dollars

I Implements digital logic using electricity
I 5V means 1
I 0V means 0

I Link to Fairchild 7483 Datasheet



Binary Subtraction

910 − 310

I Assume 5-bit two’s complement:
I 9 is 01001
I 3 is 00011
I two’s complement of -3 is: 3 + x = 24, so x = 13: 11101

I Now add 01001 and 11101
I What do you get?



Multiplication and Division

I Roughly speaking:
I Multiplication is repeated addition
I Division is repeated subtraction

I Can be optimized for certain cases
I Multiplication replaced by left shift
I Division replaced by right shift



Arithmetic Logic Unit

I Arithmetic Logic Units
I Arithmetic operations
I Logical Operations

(bitwise)

I ALUs are the fundamental
building block of computers

I Image at the right is the
AMD 2901 4-bit ALU
I Image source: By

Konstantin Lanzet (with
permission) - CPU
collection Konstantin
Lanzet, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=4774211
https://commons.wikimedia.org/w/index.php?curid=4774211
https://commons.wikimedia.org/w/index.php?curid=4774211
https://commons.wikimedia.org/w/index.php?curid=4774211
https://commons.wikimedia.org/w/index.php?curid=4774211


Revisiting our Box Diagram

CPU

RAM

ALUALU

I Multiple ALUs inside the CPU



Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



Adding two integers of different widths

int8_t x = -5;
int16_t y = 10;

y = y + x;

I Shrink y to 8 bits?
I What should we do to the top 8 bits?

I Expand x to 16 bits?
I What should the new top 8 bits of x be?



C standard rules for integer conversion

I Terminology:
I Promotion: creating a bigger int from a smaller int
I Truncation: creating a smaller int from a bigger int

I By default, C always promotes char to int when operating
on char.
I Truncates the int back to char when storing it.

I For other conversions, C tries not to lose precision using
notion of “rank”:
I Roughly, types with higher ranks have at least as much

precision as types with lower ranks
I Rankwise: long int > int > short int > char
I Definition in the C standard is more exhaustive

I Conversions
I Implicitly occur whenever operands of different types are

operated upon
I See rules on next slide



Rules for Integer Conversion of Two Operands1

I both same type, no further conversion is needed.

I both same integer type (signed or unsigned), lesser rank
converted to greater rank

I if unsigned operand has higher or equal rank, signed operand
is converted.
I can change values if signed operand had negative value (which

cannot be represented in unsigned)

I if signed operand can represent all of the values of the
unsigned operand, unsigned operand is converted

I Otherwise, both operands are converted to the unsigned
integer type corresponding to the type of the operand with
signed integer type.
I can change values

1https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.

+Understand+integer+conversion+rules

https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules


Revisiting our example

int8_t x = -5;
int16_t y = 10;

y = y + x;

I x is 8-bit, so integer promoted to int

I promoted x is same size as y

I operands are both of same type now, so no more conversions
needed



What about new bits in x?

I Promotion of x creates 8 new high bits
I Two methods to initialize these new bits:

I Zero extension: initialize them to zero
I Sign extension: initialize them to value of the existing sign bit

I C uses sign extension when promoting to signed, zero
extension otherwise
I Note: all operands could be unsigned!

I Use a C cast to control conversions
I e.g. y + (int16 t) x, explicitly casts x to int16 t



Shifting a signed integer to the right

int8_t x = -72;

x = x >> 3;

I What should be the value of high bits in the result?

I This right-shift operation on signed values is called shift
arithmetic right



Unsigned integer overflow and underflow

/* overflow */
uint16_t x = 65535;
x = x + 1;

/* underflow */
uint16_t x = 0;
x = x - 1;



What happens with unsigned integers2

The C standard says:
A computation involving unsigned operands can never overflow, because a

result that cannot be represented by the resulting unsigned integer type is

reduced modulo the number that is one greater than the largest value that can

be represented by the resulting type.

I “reduced modulo the number ...”, for uint16 t, this number
is 65536.

I So, x = x + 1 is actually x = (x + 1) % 65536 (where %
represents modulo)
I So x = 0 ultimately

I For underflow, x = x - 1, a different rule is used
I Add or subtract 65536 until it is representable by uint16 t
I −1 is not representable, but −1 + 65536 is, so x = 65535

ultimately

I Easiest to understand as wrapping around (0→ 65535→ 0)

2https://wiki.sei.cmu.edu/confluence/display/c/INT30-
C.+Ensure+that+unsigned+integer+operations+do+not+wrap



Shifting a signed integer to the right

int16_t x = -72;

x = x >> 17;

I What should x contain?



Signed integer overflow

/* overflow */
int16_t x = INT16_MAX;

x = x + 1;

/* underflow */
int16_t y = INT16_MIN;
y = y - 1;

I What should x overflow?

I What should y underflow to?



Undefined Behaviour

I For signed variables:
I Shifting right by too many bits
I Shifting left by too many bits
I Overflowing
I Underflowing

I Are all examples of undefined behaviour
I The standard refuses to say what happens

I Note: these operations are defined at machine level
I on Intel x86 processors, they wrap around, just like unsigned

ints
I but a C program cannot assume it is running on an x86



Undefined Behaviour can lead to unsound conclusions

I How to prove 1 = 2
I a = 1
I a = a2

I a− 1 = a2 − 1
I a− 1 = (a− 1)(a + 1)
I 1 = (a + 1) (dividing both sides by a− 1)
I 1 = 2 (substituting a = 1)



The quest for fast code

I Compilers want to generate as fast code as possible

I If your program uses undefined behaviour, its meaning is no
longer defined

I The compiler is then free to do whatever it wants:
I Remove code
I Replace code
I Move code
I Burn your laptop
I etc.

I Many security holes take advantage of undefined behaviour
I Read the SEI CERT C Coding Standard

I Take CSC255 to find out more about compilers

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard


Outline

Administrivia

Recap

Integer Arithmetic

Integer Arithmetic Corner Cases

Real Numbers



Real Numbers

I R
I infinite (just like integers)
I but they are different infinity (uncountable)

I There are infinite real numbers between any two real numbers
I How do we represent these using a finite, fixed number of

bits?
I Say, 32 bits



Representing Real Numbers

I We cannot represent real numbers accurately using a finite,
fixed number of bits
I But do we need infinite accuracy?

I How many (decimal) digits of precision do we use?
I In our bank accounts (before and after the decimal point?)
I In engineering?
I In science?



On magnitudes

I Smallest length
I Planck length, on the order of 10−35 (would require 35 decimal

digits)

I Smallest time
I Planck time, on the order of 10−44

I Width of visible universe
I On the order of 1024

I Lower bound on radius of universe: 1027



On precision

I Avogadro’s number: 6.02214076× 1023

I So, actually: 602214076000000000000000

I π = 3.1415...× 100

I NASA requires about 16 decimal digits of π3

I We know about a trillion

3https://blogs.scientificamerican.com/observations/

how-much-pi-do-you-need/

https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/
https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/


Scientific notation for numbers

I The scientific notation allows us to represent real numbers as:

significand× baseexponent

I For Avogadro’s number:
I Significand: 6.02214076
I Significand is scaled so always only one digit before the

decimal point
I Base: 10
I Exponent: 23



Binary Scientific Notation

I We can use scientific notation for binary numbers too:

1.011× 23

I Here, the number is:
I (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 23

I (1× 23 + 0× 22 + 1× 21 + 1× 20) = 1110

I Components:
I Significand: 1.011
I Base: 2
I Exponent: 3



Binary Scientific Notation: Example #2

I Now with a negative exponent:

1.011× 2−3

I Here, the number is:
I (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 2−3

I (1× 2−3 + 0× 2−4 + 1× 2−5 + 1× 2−6)
I (0.12510 + 0 + 0.062510 + 0.0312510) = 0.171875

I Components:
I Significand: 1.011
I Base: 2
I Exponent: -3



Some design notes

I Significand contains a radix point (i.e. decimal point or binary
point)
I But it’s position is fixed: only one digit before the radix point
I In binary scientific notation, this is always 1 (why?)
I We don’t need to store the radix point
I So significand can be treated as an integer with an implicit

radix point

I Base is always 2 for binary numbers
I No need to store this

I Exponent is also an integer
I Could be negative or positive or zero



Design notes (continued)

I So (binary) real numbers can be expressed as a combination
of two fields:
I significand (possibly a large number, say upto 10 decimal

digits)
I exponent (possibly a smallish number, say upto 4410)
I would allow us to store numbers with at least 10 decimal digits

of precision, upto 44 decimal digits long

I We’ll also need to store sign information for the significand
and the exponent

I How many bits?
I for 10 significant decimal digits? e.g. 9,999,999,999
I for max. exponent 5010?
I plus two bits for sign (one for significand, one for exponent)



Design notes (continued)

I How many bits?
I for 10 significant decimal digits? e.g. 9,999,999,999: about 34

bits
I for max. exponent 50? about 6 bits
I plus two bits for sign (one for significand, one for exponent)

I Total: 34 + 6 + 2 = 42 bits
I Could be implemented as a bitfield
I But 42 is between 32 and 64, not efficient to manipulate

I What format should we use to store negative significands and
exponents?
I sign/magnitude
I one’s complement
I two’s complement
I other?



Bitfield Design Constraints

I Ideally should fit sign, significand and exponent in 32 bits or
64 bits
I Easier to manipulate on modern systems

I Arithmetic operations should be fast and “easy”
I Comparison operations should be fast and “easy”

I e.g. should not need to extract fields and compare separately

I Should satisfy application requirements
I esp. with accuracy, precision and rounding
I should probably be constraint #1


	Administrivia
	Recap
	Integer Arithmetic
	Integer Arithmetic Corner Cases
	Real Numbers

