
CSC2/452 Computer Organization
Concurrency and Inter-process Communication

Sreepathi Pai

URCS

November 14, 2022



Outline

Administrivia

Recap

Data sharing and Synchronization

When atomics are not enough



Outline

Administrivia

Recap

Data sharing and Synchronization

When atomics are not enough



Administrivia

I Homework #7 is out
I Due Wed, Nov 16, in class
I No HW next week, will probably do two more

I Assignment #4 will be out today
I Due date: Tuesday, Nov 22, 7PM

I Assignment #5 will be out Dec 1
I Almost certainly the last assignment



Outline

Administrivia

Recap

Data sharing and Synchronization

When atomics are not enough



Splendid Isolation?

I Processes are isolated from other processes
I CPU + OS enforce this

I But if processes can’t exchange data, work cannot be split
I Would be unable to do work in parallel

I Unfettered sharing is also dangerous
I Lots of security problems

I How do we share data in a controlled manner?



Outline

Administrivia

Recap

Data sharing and Synchronization

When atomics are not enough



The problems of data sharing

Data sharing requires:
I A shared medium

I obvious requirement

I A mechanism for synchronization
I i.e. ordering or mutual exclusion
I this is used to order/control accesses to the shared medium



Shared medium

What is shared between processes?

I Pipeline?

I Cache/Memory Hierarchy?

I Disk/Filesystem?



Shared medium

I Pipeline is time-shared, and CPUs isolate the pipeline from
different processes
I apparently, not very successfully, as recent revelations show
I ZombieLoad

I Cache/memory hierarchy is space-shared, but uses virtual
addressing to isolate processes
I Processes don’t share address space by default, so can’t locate

each others data
I again, side-channels (usually timing), can be used to leak data

I Disk/filesystem?
I Shared address space (filename)

https://zombieloadattack.com/


Sharing data through the filesystem

I Process A writes data to file

I Process B reads data from file

I Process A and Process B can be running at the same time



Process Ordering

I Recall that concurrently running processes get a slice of the
CPU
I Usually 100ms

I The OS decides the order in which processes are executed by
the CPU
I This order is non-deterministic



Example

for(int i = 0; i < nchild; i++) {
if(fork() == 0) {

printf("In child %d\n", i);
return 0;

}
}



Output for 3

$ ./fork_order 3
Creating 3 child processes
In child 0
In child 1
In child 2



Output for 7

$ ./fork_order 7
Creating 7 child processes
In child 0
In child 1
In child 3
In child 2
In child 4
In child 6
In child 5



Adding N numbers

/* a is an array of N elements */
NPERCHILD = (N+nchild-1)/nchild;

unsigned int sum = 0;

for(int i = 0; i < nchild; i++) {
if(fork() == 0) {

printf("In child %d, adding array elements from %d\n", i,
i * NPERCHILD);

for(int j = i * NPERCHILD;
j < (i * NPERCHILD + NPERCHILD) && j < N;
j++)

{
sum += a[j];

}

printf("In child %d, sum is %d\n", i, sum);
return 0;

}
}

printf("In parent, sum is %d\n", sum);

I Each child process computes the sum of part of an array



Output

Creating 5 child processes to add 10000 numbers
In child 0, adding array elements from 0
In child 0, sum is 1999000
In child 1, adding array elements from 2000
In child 1, sum is 5999000
In parent, sum is 0
In child 2, adding array elements from 4000
In child 3, adding array elements from 6000
In child 4, adding array elements from 8000
In child 4, sum is 17999000
In child 2, sum is 9999000
In child 3, sum is 13999000

I Problem #1: Parent is not ordered with respect to child
processes



Ordering Parent w.r.t. Child Processes

/* loop that forks child processes */

int pid = 0;
int wstatus = 0;
while(1) {
pid = waitpid(-1, &wstatus, 0);
if(pid == -1) {

if(errno == ECHILD) break; // no more child processes left
if(errno == EINTR) continue;

}
}
printf("In parent, sum is %d\n", sum);

I The loop waits for all child processes



Output after ordering

Creating 5 child processes to add 10000 numbers
In child 0, adding array elements from 0
In child 0, sum is 1999000
In child 2, adding array elements from 4000
In child 1, adding array elements from 2000
In child 1, sum is 5999000
In child 2, sum is 9999000
In child 4, adding array elements from 8000
In child 4, sum is 17999000
In child 3, adding array elements from 6000
In child 3, sum is 13999000
In parent, sum is 0

I This is ordered, but sum is still 0
I It should be 49995000

I Why?



C-O-W

I Although fork() duplicates data, it is copy-on-write
I Any writes will not be shared!



Adding shared memory

unsigned int *sum;
sum = mmap(NULL, 4096, PROT_READ | PROT_WRITE,

MAP_SHARED | MAP_ANONYMOUS, -1, 0);

if(sum == MAP_FAILED) {
perror("mmap");
exit(1);

}

*sum = 0; // not required, since mmap initializes to 0

/* fork loop follows */

I We use MAP SHARED | MAP ANONYMOUS to create a shared
page, and store the pointer to that page in sum

I All child processes will share that page too, in read/write
mode
I *sum += a[i]



Output

Creating 5 child processes to add 10000 numbers
In child 0, adding array elements from 0
In child 0, sum is 1999000
In child 1, adding array elements from 2000
In child 1, sum is 7998000
In child 2, adding array elements from 4000
In child 3, adding array elements from 6000
In child 3, sum is 21997000
In child 4, adding array elements from 8000
In child 2, sum is 17997000
In child 4, sum is 35996000
In parent, sum is 35996000

I What happened?



Output, again

Creating 5 child processes to add 10000 numbers
In child 0, adding array elements from 0
In child 0, sum is 1999000
In child 2, adding array elements from 4000
In child 1, adding array elements from 2000
In child 1, sum is 7998000
In child 2, sum is 11998000
In child 4, adding array elements from 8000
In child 4, sum is 29997000
In child 3, adding array elements from 6000
In child 3, sum is 43996000
In parent, sum is 43996000

I The results are different!
I Program is executing non-deterministically



Code

for(int j = i * NPERCHILD;
j < (i * NPERCHILD + NPERCHILD) && j < N;
j++)

{
*sum += a[j];

}

I Addition is associative
I Order shouldn’t matter!



Dissecting that line

*sum += a[j]

I Read the contents of a[j] and add them to the value at
address pointed to by sum

I What is our expectation about the execution of this
statement?



Assembly language code

mov 0x0(%r13),%eax # eax = *sum

loop:
movslq %r12d,%rcx # rcx = j
add (%rbx,%rcx,4),%eax # eax += rbx[rcx*4]

... check if loop is over
jl loop # j < ...

mov %eax,0x0(%r13) # *sum = eax

I C decided reading/writing to memory on every iteration of the
loop was too slow
I So it read *sum once at beginning of loop, and stored it in

%eax
I It is permitted to make copies like this for variables that are

not shared

I As a result, what happens when different child processes write
their values of eax to sum?



A more subtle issue

I It currently takes three instructions
I one to load *sum into a register
I one to add a[j] to the register
I one to store *sum back into memory

I You could be interrupted between any of those instructions!
I You might be operating on stale values



Solving these issues

I How to prevent the C compiler from storing values in
registers?
I I.e. how to make it always read/write from memory?

I How to execute the group of instructions atomically?
I I.e. load and add and store should behave like one operation



C11 feature

#include <stdatomic.h>
...

atomic_unsigned_int *sum;

I Change sum’s type to atomic unsigned int *

I Compile with gcc -std=gnu11 (or gcc -std=c11, but you
won’t get MAP ANONYMOUS)
loop:

movslq %r12d,%rdx % rdx = j
mov (%rbx,%rdx,4),%edx % edx = rbx[rdx*4]
lock add %edx,0x0(%r13) % *sum += edx
...

I *sum is no longer read into register
I lock prefix added to add instruction

I Other processes can’t access the cache line containing *sum

when add is executing



Output

Creating 5 child processes to add 10000 numbers
In child 0, adding array elements from 0
In child 1, adding array elements from 2000
In child 0, sum is 1999000
In child 2, adding array elements from 4000
In child 1, sum is 7998000
In child 4, adding array elements from 8000
In child 2, sum is 20782970
In child 4, sum is 35996000
In child 3, adding array elements from 6000
In child 3, sum is 49995000
In parent, sum is 49995000

I It works!
I Or does it?
I Are we just seeing one order where the answer was correct?



C11 atomics

I The compiler needs to be told that some variables are shared
I No way to do this reliably before the C11 standard

I Some hodgepodge of volatile and machine-specific assembly
code

I C11 brings atomic variables to the C language
I Imply that the variable is shared
I Can recognize certain composite operations as “atomic” and

generates appropriate assembly



Warning

The code, while parallel (and correct), is not necessarily fast.
I You should update atomic variables as few times as possible

I Compute a private sum in a unshared variable (i.e. register),
and then add it to the shared sum

I Parallel sum has a better algorithm

I But take CS2/458 to learn more about these issues



Outline

Administrivia

Recap

Data sharing and Synchronization

When atomics are not enough



Problem

// transfer 10000 from account a to b

balance_a -= 10000
<---- interrupted here

balance_b += 10000

I Each operation here is atomic

I But, logically, the entire transfer should be atomic
I Assuming balance a=15000 and balance b=15000 before

the transfer
I a valid state after is balance a=5000 and balance b=25000

I An invalid (logical) state is balance a=5000 and
balance b=15000
I e.g. if the program was context-switched at the indicated point



Atomics for non-primitive types

I C11 atomics (and atomics in general) can work on non
primitive types
I i.e. structs and unions
I though not arrays (although individual elements of arrays of

primitive elements are fine)
I uses Atomic

I But at hardware level atomic behaviour is usually only
supported for a single instruction
I Not a sequence of instructions



Solutions

// transfer 10000 from account a to b

balance_a -= 10000
<---- interrupted here

balance_b += 10000

I Prevent interruptions?

I Prevent other processes from reading or writing balance a

and balance b until transfer is complete



Preventing Interruptions

I Most OSes today are pre-emptive
I You cannot prevent your process from being context-switched

I in general, at least



Mutual Exclusion

I We want to allow only one process to read/write balance a

and balance b

I This is the problem of mutual exclusion



Semaphores

I Semaphores are a general solution to the mutual exclusion
problem
I Other more efficient mechanisms exist, e.g. C11’s Atomic

I A semaphore is an object that supports two operations
I “wait” and “signal”
I historically called “P” and “V”

I POSIX supports semaphores



Using a Named Semaphore

/* create a semaphore with value 1 */
sbalance = sem_open("/balance", O_CREAT, S_IRUSR | S_IWUSR, 1);
if(sbalance == SEM_FAILED) {

perror("sem_open");
exit(1);

}

printf("waiting to enter\n");

/* waits if current value of semaphore is == 0, otherwise decrements
it and returns immediately */

while(sem_wait(sbalance) != 0);

printf("in critical section\n");
balance_a -= amount;
balance_b += amount;

/* increases semaphore value by 1, releases a waiting
process if value > 0 */

sem_post(sbalance);
printf("done\n");

sem_unlink("/balance");



Explanation

I Create a named semaphore
I The name appears in the filesystem, so different processes can

share the same semaphore

I Initialize it with value 1
I To indicate only one process can read/write balances

I Each process then calls sem wait before reading/writing
balances
I This will force the process to wait if another process is already

reading/writing balances (i.e. the semaphore value will be 0 or
less)

I The process that is in the critical section should call sem post
when it is done
I sem post increases the semaphore value
I This allows another process to enter the critical section



Other IPC mechanisms

I Shared memory and ordering are the basic building blocks
I Other inter-process communication mechanisms exist:

I SystemV shared memory (for systems that don’t support
MAP ANONYMOUS),

I Pipes (one-way communication between programs),
I Message queues,
I Sockets (see textbook, if interested, or take CSC2/457)
I and other Linux-specific mechanisms



References

I Chapter 12 of the textbook
I Same issues as presented here, but with different examples
I Also uses unnamed semaphores
I Also focuses more on thread-based concurrency, which we’ll

discuss later
I Not up to date with the latest in C11

I Start from Overview Manual page for semaphores
I No good overview of atomic variables I could find yet

I The C11 Standard details their behaviour, but it’s not
introductory

I Also, changes and improvements coming in C23

http://man7.org/linux/man-pages/man7/sem_overview.7.html

	Administrivia
	Recap
	Data sharing and Synchronization
	When atomics are not enough

