CSC2/452 Computer Organization Systems of Tomorrow

Sreepathi Pai

URCS

Nov 21, 2022

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Administrivia

- ► Assignment #4 is due tomorrow 1159PM
- Assignment #2 Redux will be out Nov 28, due Nov 30
- ► Assignment #5 (last!) will follow

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Tomorrow

The future is already here – it's just not very evenly distributed.

▶ William Gibson

1945: First Draft of the EDVAC

- ► Not very long ago
- ▶ Birth of the "CPU + RAM" design
- "Organization"

Moore Scaling: 1965

- Observation that number of transistors in a given area was doubling every 2 years
 - ► This is exponential scaling

By Max Roser - https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=79751151

Dennard Scaling: 1974

TABLE I Scaling Results for Circuit Performance

Device or Circuit Parameter	Scaling Factor
Device dimension t_{ox} , L , W	1/κ
Doping concentration N_a	ĸ
Voltage V	$1/\kappa$
Current I	$1/\kappa$
Capacitance $\epsilon A/t$	$1/\kappa$
Delay time/circuit VC/I	$1/\kappa$
Power dissipation/circuit VI	$1/\kappa^2$
Power density VI/A	1

Dennard, et al., 1974, Design of Ion-implanted MOSFET's with Very Small Physical Dimensions, IEEE J. of Solid-State Circuits

The Bounty from Scaling

- ► More transistors, Same Area, Same Power
- Same number of transistors, Less Area, Less Power
 - ► Half the size, could run at twice the frequency
- Hence popular notion: speed of computers doubles every 18 months
- Enabled everything from Pixar to mobile phones in your pocket

When it all broken down: The Noughties

- ► Around 2004 to 2006, Dennard Scaling broke down
 - Transistors still growing smaller, but power usage not decreasing
 - More transistors, more power
 - More power in smaller area, heat dissipation problems
- Moore Scaling still applies
 - But pace has slowed down significantly
 - Lower limit is atomic size
- Modern chips have billions of transistors
 - ▶ NVIDIA's Grace Hopper GPU has 80 billion transistors
 - Will we get to hundreds of billions?

Dark Silicon?

- Even if we can build chips with hundreds of billions of transistors, can we switch them all on?
- Dark Silicon is the idea that we will be unable to power all of the chip simultaneously
 - ► Some parts of the chip will be without power, i.e. "dark"
 - These parts will only be switched on demand

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Multicore CPUs

- ▶ Performance cannot be improved by reducing t (average time per unit of work)
- ► Increase *P*, parallelism!
- ▶ Thus, in 2004, Intel announces multicore CPUs
- But these are not transparent to programmers
 - You must rewrite software to take advantage of them!

Accelerator Computing

- ▶ If you have to rewrite software, are there alternatives to CPUs?
- ▶ Lots of accelerators proposed around 2004–2006
 - Cell BE (Sony PS3)
 - Clearspeed
 - Graphics Processing Units (GPUs)
- An accelerator is a processor that can speed up some tasks
 - CPU offloads these tasks to the accelerator

Graphics Processing Units: GPUs

- Originally designed to speed up graphics
 - Also games
- Could only do limited computation
- ► This changed around 2006
 - Could actually run C-like programs

GPUs enable HPC+Deep Learning+Bitcoin

- ▶ 2006 to 2011, GPUs enabled high performance computing
 - ► Mostly matrix multiply
 - Nearly all supercomputers had GPUs by then
- ► In 2011, GPUs were also found to be really fast at training "deep" neural networks
 - ▶ 100x than CPUs
 - ► (Re-)started the AI hype
- ► A few years later, GPUs also enabled Bitcoin/Ethereum, etc.

Domain-specific accelerators: When GPUs are too slow

- ► GPUs and CPUs are general-purpose
 - Can perform most computations
- Higher performance can be obtained by specializing
- Google's Tensor Processing Unit is an example
 - Specialized for tensor operations

By Zinskauf - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=77299254

Accelerators Galore

- Apple's A8 Mobile System-on-Chip
- CPU, GPU, Caches and Memory Controllers highlighted.
- What about the rest of the chip?

Hill and Reddi, Accelerator-level Parallelism: Mobile SoCs as Harbinger of the Future, ISPASS 2019

Programmer's View of this World

- Fixed-function accelerators
 - Custom interfaces to each
 - Use libraries
- General-purpose accelerators
 - New programming languages
 - GPUs: CUDA, OpenCL, ...
- Multicore CPUs
 - Parallel Programming Models (PThreads, OpenMP, etc.)
- Heterogenity
 - Which pieces of your program should run where?

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

DRAM

- Current form of DRAM was invented in 1968
- Modern computers use DDR SDRAM
 - ► Introduced in 1992
- Slow, much focus on improving memory bandwidth
 - GPUs usually have around 300GByte/s
 - ► Usually 256 bits/cycle

Figure by Glogger at English Wikipedia - Transferred from en.wikipedia to Commons., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5549293

Stacked DRAM: HBM and HMC

- Stack layers of DRAM in 3 dimensions
- High-bandwidth memory (HBM)
 - supports up to 4096 bits/cycle
- Hybrid Memory Cube
 - abandoned now
- Supported in some GPUs
 - upto 1TByte/s
 - ► A DVD is around 4–8GB

Courtesy AMD

embedded DRAM

- Move DRAM onto the main processor package
- Can use it for building caches instead of SRAM
 - Enables much larger caches
- ► Featured here: Intel Haswell GT3e

Arabinda Das, Intel's Embedded DRAM: New Era of Cache Memory

Storage: Non-volatile Memory

- Rotating Media
 - ▶ Magnetic Hard Disks (Shingled – 10TB+)
 - ► Tape Systems (10TB+)
- Still very important, even when most data is stored remotely
 - Amazon Snowball Edge –
 100TB (featured here)
 - Used to transfer data to Amazon's servers

Source: https://aws.amazon.com/blogs/aws/aws-snowball-edge-more-storage-local-endpoints-lambda-functi

Amazon Snowmobile

- ► Can transfer 100PB/trip
- ▶ Who generates this much data?
 - Satellite imagery is apparently around 10PB/year

Source: Move exabytes of data to cloud in weeks

Flash Memory

- ► Solid-state storage
 - No moving parts
 - Limited endurance (number of writes)
- Most common
 - USB Flash
 - SSD

3D XPoint

- ► Developed by Intel/Micron
 - Stores data using "bulk properties" of materials
- ► Two primary uses:
 - SSD (Flash memory replacement)
 - NVDIMM (DRAM replacement)
- Legend

Ochre: Selector

Green: Memory cell

Gray: Power

Picture by Trolomite - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45277623

Non-volatile Main Memory?

- ▶ Intel Optane DC
 - Claimed to be 8X denser than DRAM (6TB per system)
 - Others on their way
- Data remains in memory when you:
 - Switch off
 - Program ends
- How will writing programs change?
- Killed by Intel a few months ago

Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Programming NVM

- ► The Good:
 - ► No more translating between in-memory and on-disk representations
- ► The Bad:
 - What if a program crashes?
 - How to detect inconsistent state?
- ► The Strange:
 - Writes much slower than Reads
 - Both slower than DRAM
- Heterogenity in RAM
 - Which parts of data structures in DRAM? Which parts in NVRAM?

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Mobile Computing

- ► Mobile phones obviously
- Virtual Reality
 - e.g. Head-mounted computers
- Augmented Reality
 - Glasses (mostly)
- Key challenges
 - Size, energy, power, performance

Hololens image by Ramadhanakbr - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=52546267

Data Centre Computing

- Consolidate compute, data storage in one central, physical location
- Access data and applications remotely
- Key challenges:
 - Size, energy, power, performance

By A5b - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=30380190

Cloud Computing

- On-demand access to computing resources
- Arguably, made famous by Amazon
 - Amazon AWS
- Amazon builds and runs data centres
 - You rent portions of it
 - Pay per time/data transferred, etc. (like a utility)

Intermittent Computing

- Featured here, a device that runs off the energy of radio waves
 - Think Wifi-powered devices
- Such energy-harvesting devices compute "intermittently"
 - Power could be lost any moment

Lucia et al., "Intermittent Computing: Challenges and Opportunities", SNAPL 2017

Others Systems of the Future

Where will computing systems appear next? HINT: Remember the chip shortage?

Programming Tiny Computers in your Pocket and Computers in the Cloud

- Programming Languages and Tools?
- Program support?
 - ► Processes?
 - Virtual memory?
 - Parallelism?
 - Networking?

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

Virtualization

- Cloud computing requires a machine to run multiple operating systems
 - Virtualize entire machine
 - Can stop a virtual machine and move it to another machine in the cloud
- OS for the cloud
 - Virtual machines (e.g. Qemu, VirtualBox, VMware)
 - ► Hypervisors (e.g. Xen)
 - "Ultravisors"

Containers

- Same OS, different "applications"
- Isolating applications from each other
 - Different "tenants" in the cloud
 - Different installed apps
- ► As lightweight as possible
 - "Serverless" computing
- ► Inspired from the Plan9 OS
 - From Bell Labs

Challenges

- How to secure tenants?
 - Similar to protecting processes from each other
- ► How to account and bill for resources?
 - CPU time, bandwidth, storage, etc.?

Side-channel Attacks

- No direct channel to steal data
- But tenants are running on the same machine
- Can they use shared parts of hardware to leak information?
 - e.g., through cache hit/miss information?
- Such attacks are called side-channel attacks
 - e.g. Spectre

Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix? Summary: small poll for my new operating system

Message-ID:

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has been brewing since april, and is starting to get ready. I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things).

Courtesy:

https://www.cs.cmu.edu/~awb/linux.history.html

Linux (contd.)

- Certainly not "OS of tomorrow", even when it came out in 1990s
 - 30-year old monolithic design
 - built by a student like you, by reading 80386 manuals
- ▶ But has enabled nearly every technology advance since then
 - Supercomputers
 - Mobile Phones
 - Cloud
 - 3D printers
 - Airplane entertainment systems
 - Networking devices
 - Oscilloscopes
- MS now ships Linux as part of Windows
 - ► WSL2 1.0 was released last week
 - For a 90s kid, this is the equivalent of hell freezing over

Outline

Administrivia

Introduction

CPUs of Tomorrow

Memory and Storage of Tomorrow

Systems of Tomorrow

Operating Systems of Tomorrow

x of tomorrow

What about the rest of the system?

- ▶ Programming languages of tomorrow
 - Not C, possibly not Python, possibly not Java
 - ► Rust? Go?
 - WebAssembly? (not a direct programming language)
- Applications of tomorrow?
 - ► AI?

Reflections

- Machines will be increasingly heterogeneous
 - ▶ Both in processors and RAM
- Programming models will be very different
 - General-purpose
 - Domain-specific
 - Fixed-function
- Performance is now the responsibility of the programmer!
- Security is a major concern
 - Poor programming can hurt people