CSC2/455 Software Analysis and Improvement
Dominator and SSA Form - II

Sreepathi Pai

URCS

February 11, 2019
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
Static Single Assignment Form

- Simple algorithm to generate SSA form
 - Introduce ϕ functions
 - Rename variables using Reaching Definitions
- Algorithm can generate excessive ϕ functions
 - TODAY: Use dominance frontiers to place the minimal number of ϕ functions
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
Recall: Dominators

- A node n in the CFG dominates a node m iff:
 - n is on all paths from entry to m
 - by definition, a node n always dominates itself
 - if $n \neq m$, then n strictly dominates m
- Computed using a dataflow-style analysis
 - Each node annotated with a set of its dominators
The dominance frontier of a node n ($DF(n)$) is a set of nodes $m \in DF(n)$ iff:
- n does not strictly dominate m
- n dominates q where $q \in \text{pred}(m)$

Note that dominance frontiers only contain join nodes:
- i.e. nodes with multiple predecessors

Computing the dominance frontier of each node:
- Iterative Data-flow analysis?
Direct calculation of dominance frontiers using *dominator trees*.
Immediate Dominators

- The *immediate* dominator of a node m ($\text{IDOM}(m)$) is the node n:
 - such that n strictly dominates m, and
 - n does not dominate o where $o \in (\text{DOM}(m) - \{m\})$
 - in some sense, n is the “closest” dominator in the CFG to m.

- By definition, ENTRY has no immediate dominator.
Dominator Trees

- Note that each node in the CFG can have only one immediate dominator
 - Can you see why?
- Create a graph $G = (V, E)$, where:
 - V is the set of basic blocks
 - There is an edge (n, m) in E if n is the immediate dominator of m (i.e. $\text{IDOM}(m) = n$)
Example: CFG and its dominator tree
Which node is the immediate dominator of B1?
Computing the dominance frontier

- Find all join nodes in CFG, e.g. j
- For all nodes n that dominate predecessors of j
 - If n does not strictly dominate j, add j to $DF(n)$
- This last step can be operationalized as:
 - Start from a predecessor p in the dominator tree
 - Add m to $DF(p)$
 - Move up the tree and repeat until you reach $IDOM(j)$
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
Example: Non-redundant ϕ functions

ENTRY

\[y_0 = x_0 + 1 \]
\[x_1 = 2 \]

\[y_1 = \phi(y_0, y_4) \]
\[y_1 > 3 \]

\[y_2 = 3 \]
\[a = 3 \]

\[y_3 = \phi(y_1, y_2) \]
\[y_4 = x_1 + y_3 + 2 \]

EXIT
Placing \(\phi \) functions

- For each definition \(d \) in basic block \(n \):
 - Place a \(\phi \) function for \(d \) in all nodes \(m \) where \(m \in DF(n) \)
 - Note that each \(\phi \) function is also a definition!
 - Repeat, until no more \(\phi \) functions need to be inserted
- This is the minimal number of \(\phi \) functions for a definition \(d \)
 - Can we reduce the overall number of \(\phi \) functions?
- (Figure 9.9 in Cooper and Turczon)
Other optimizations

▶ Dead definitions
 ▶ Definitions that are not read (i.e. overwritten) do not need ϕ functions

▶ Two forms:
 ▶ *Semi-pruned* SSA form, using “globals” names (those variables that are live in to a block)
 ▶ *Pruned* SSA form, using `LIVEOUT` information
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
Renaming variables

- SSA form introduced “subscripts” for each variable
- Should we drop them when generating code?

```plaintext
a_0 = x_0 + y_0
b_0 = a_0
a_1 = 17
c_0 = a_0
```
Problem with dropping subscripts

\[
a = x + y
\]
\[
b = a
\]
\[
a = 17
\]
\[
c = a \quad \# \text{ WRONG!}
\]
Handling subscripts

- Each definition becomes a new variable
 - I.e. Do NOT drop subscripts
- Preserves data dependences
 - Esp. important when we aggressively move code from basic blocks (e.g. very busy expressions, loop invariant code motion, etc.)
Code for ϕ functions

- Introduce copies along each incoming edge to a join node

```
i_2 = 1
i_4 = \phi(i_2, i_3)
...
i_3 = a + b
```

```
i_4 = \phi(i_2, i_3)
...
```
Inserting appropriate copies along incoming edges

\[i_2 = 1 \]
\[i_4 = i_2 \]
\[i_3 = a + b \]
\[i_4 = i_3 \]
Critical edges

- Executing ϕ functions by inserting copies into predecessor blocks is not always correct
- If the predecessor of a block contain ϕ functions has multiple successors, then the ϕ function may execute when it shouldn’t
 - This *may* be wrong
- Edges connecting such predecessors to the block contain the ϕ function are called *critical* edges
- Such edges need to be *split* by inserting a block on that edge
- See the discussion in Cooper and Turczon for more details and an example
More complications

- Excessive copies
 - Copy propagation into ϕ functions
 - Note args in resulting $x_1 = \phi(x_0, y_1)$ ϕ functions are for different variables
Outline

Review

Dominator Trees and Frontiers

Minimal SSA Form

Emitting code for SSA form

Postscript
References

► Chapter 9 of Cooper and Turczon
 ► Section 9.2.1
 ► Section 9.3