CSC2/455 Software Analysis and Improvement
Introduction to Loop Optimizations

Sreepathi Pai

URCS

March 18, 2019
Outline

Review

Loop Transformations

Postscript
Outline

Review

Loop Transformations

Postscript
Optimizations

- Part I: Analysis
 - Iterative Dataflow Analysis
 - SSA Form
- Part II-A: Optimization
 - Dead Code Elimination
 - Partial Redundancy Elimination
- Part II-B: Loop Optimizations
 - Dependence Analysis
 - Loop Transformations
- Part III: Code Generation
 - Instruction Selection
 - Instruction Scheduling
 - Register Allocation
- Part IV: Advanced Topics
Remainder of the course

- Loop Optimization
- Use LLVM
- Advanced Topics
 - Interprocedural Analysis
 - Type Inference
 - Abstract Interpretation
 - Program Verification
 - more, depending on time ...
- CSC455 paper reading
 - 25% of final exam grade based on paper reading
Outline

Review

Loop Transformations

Postscript
Why Loop Transformations

- Potentially lots of computation
 - A few operations execute many times
- Potentially lots of memory accesses
- Array-based data structures show up frequently
 - Matrices, vectors, etc.
- Loops are naturally paired with arrays
- FORTRAN
 - FORMula TRANslator
 - World’s first high-level programming language
Important Applications

- Scientific Computing/Computational Science
 - Simulation of Galaxies, Molecules, etc.
 - Drug Discovery
- Audio/Video Processing
 - Signal Processing
 - Compression
- Machine Learning (specifically Deep Learning)
 - Recognizing cats
 - Showing targeted ads
Matrix Multiply – IJK

- Multiplying two matrices:
 - A \((m \times n)\)
 - B \((n \times k)\)
 - C \((m \times k)\) [result]

- Here: \(m = n = k\)

```java
for(ii = 0; ii < m; ii++)
    for(jj = 0; jj < n; jj++)
        for(kk = 0; kk < k; kk++)
            C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];
```
Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
 for(kk = 0; kk < k; kk++)
 for(jj = 0; jj < n; jj++)
 C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];
Performance of the two versions?

- on 1024x1024 matrices of ints
- which is faster?
- by how much?
Performance of the two versions

- on 1024x1024 matrices
- Time for IJK: 0.554 s ± 0.003s (95% CI)
- Time for IKJ: 6.618 s ± 0.032s (95% CI)
What caused the nearly 12X slowdown?

- Matrix Multiply has a large number of arithmetic operations
 - But the number of operations did not change
- Matrix Multiply also refers to a large number of array elements
 - Order in which they access elements changed
 - But why should this matter?
Die shot of a processor (IBM Power 8)
Die shot of a processor (IBM Power 8)
Motivation for a memory hierarchy

- Not all memory types are equal
 - Consider: SRAM, DRAM and magnetic storage
- Speed to access data
 - Depends on size and type of memory
 - SRAM > DRAM > Magnetic storage
- Density of storing data
 - Bits per square millimeter
 - SRAM < DRAM < Magnetic storage
The Memory Hierarchy – Part I

- Registers
 - managed by compiler
 - “logic”
- L1 cache
 - small (10s KB), usually 1-cycle access
 - SRAM (also “logic”)
- L2 cache
 - largish (100s KB), 10s of cycles
 - SRAM
- ...

The Memory Hierarchy – Part II

- L3 cache
 - usually on multicores
 - much larger (MB), 100s of cycles
 - SRAM or (recently) embedded DRAM

- DRAM
 - off-chip, large (GB)

- HDD
 - Magnetic/Rotating Storage (TBs)
 - Flash memory (GBs)
Performance of the hierarchy?

Why structure memory in a hierarchy?

- Each level of hierarchy adds a delay
- Time to access memory increases!
 - Or does it?
Performance of the hierarchy

- Structures in memory hierarchy duplicate data stored further away
 - original meaning of the word cache
- If data is found closer to processor (i.e. hit), read it from there
- Otherwise (i.e. miss), pass request to next level of the hierarchy
Why the hierarchy works in practice

- **Data Reuse (or “locality”)**
 - Temporal (same data will be referred again)
 - Spatial (data close to each other in *space* will be referred close to each other in *time*)

- **Speed differences**
 - Time to access L1: 1ns
 - *Branch mispredict*: 3ns
 - Time to access L2: 4ns
 - Main memory access time: 100ns
 - SSD access time: 16μs
 - Rotating media access time: < 5 ms
 - From Latency Numbers Every Programmer Should Know
The cache equation (informal)

Assume a one-level cache (i.e. cache + RAM):

\[\text{latency} = \text{latency}_{\text{hit}} \]

or

\[\text{latency} = \text{latency}_{\text{miss}} \]
The cache equation for one level of caches

\[latency_{avg} = (fraction_{hit}) \times latency_{hit} + (1 - fraction_{hit}) \times latency_{miss} \]
Goal 1 of Loop Transformation: Improve Locality

Can we analyze a program’s locality? Can we change the program to get better locality [and hence, better performance]?
Parallel Processing

- Our matrix was 1024x1024
 - 1 million output elements
- Each output matrix entry can be calculated independently of others
 - (Informally) Does not need other output values
Embarrassingly Parallel

- On a shared-memory machine with N processors
 - Shared memory: Each processor can “see” the same memory
 - I.e. your mobile phone and most modern desktops
- Each processor can be given $(1024 \times 1024)/N$ output elements
 - “Embarrassingly Parallel”
- Potentially reduce time by (up to) N
Embarrassingly Serial?

Consider a single processor's work:

```c
for(kk = 0; kk < k; kk++)
    C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];
```

Must this be executed serially?
Reductions

- Addition is associative
- Split up arrays into K parts
- Compute the sum of each part separately (in parallel)
- Combine the sums
 - Tree reduction
Goal 2 of Loop Transformations: Exploit Parallelism

- Known as “vectorization”
- Coarse-grain
 - Thread-level parallelism (across cores)
- Fine-grain
 - SIMD-style parallelism (within a core)
Loop Interchange

```c
for(ii = 0; ii < m; ii++)
    for(jj = 0; jj < n; jj++)
        for(kk = 0; kk < k; kk++)
            C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];
```

- 3 loops, 6 possible orderings
- All 6 orderings are "correct"
 - How do we know?
 - How can a compiler figure this out?
- The 6 orderings do not perform the same
 - How can a compiler analyse this?
When are Loop Transformations Correct?

- Loosely speaking, loop transformations change ordering of operations in loops
 - to improve locality
 - to increase parallelism

- These transformations are legal only if:
 - (too restrictive) they preserve the semantics of the original program
 - (less restrictive) they preserve the *dependences* of the original program
Outline

Review

Loop Transformations

Postscript
Next class

- Dependence Analysis
- Computational Geometry
References

- Dragon Book, Chapter 11
- Allen and Kennedy