CSC2/458 Parallel and Distributed Systems
Vectorization

Sreepathi Pai

URCS

March 25, 2019
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Loop optimizations so far

- Important applications
 - Scientific computing
 - Audio/Video processing
 - Deep Learning

- Loop Dependences
 - True, anti- and output dependences
 - Must examine dynamic trace
 - Iteration spaces, vectors, lexicographic ordering

- Identifying loop dependences
 - Restrict array index functions to affine functions
 - Formulate dependence testing as an ILP
 - Dependence exists if solutions exist
 - ILP is NP-complete

- Today
 - Heuristics
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Fortran 90 Vectorization

- If a loop contains a single statement
- And there is no loop-carried dependence
 - its iterations are independent of each other
- Then its iterations can be executed in parallel
 - “vectorization”
Example #1

DO I = 1, N
 X(I) = X(I) + C
ENDDO

can be vectorized as (Fortran-specific syntax)

X(1:N) = X(1:N) + C
Example #2

```
DO I = 1, N
    X(I+1) = X(I) + C
ENDDO
```

cannot be vectorized as (Fortran-specific syntax)

```
X(2:N+1) = X(1:N) + C
```

Fortran 90 semantics say that RHS uses original values.

- **Serial code computes:**
 - $X(2) = X(1) + C$
 - $X(3) = X(2) + C = X(1) + C + C$
- **Vectorized code computes**
 - $X(2) = X(1) + C$
 - $X(3) = X(2) + C$
 - i.e. updates on the LHS are not reflected in RHS until the entire statement has finished executing
DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO

Note loop-carried dependence S1 δ S2
Can this be vectorized?
Example #3: Vectorized by Distribution

```
DO I = 1, N
S1:   A(I + 1) = B(I) + C
ENDDO
DO I = 1, N
S2:   D(I) = A(I) + E
ENDDO
```

- Loop "distribution"

```
  A(2:N+1) = B(1:N) + C
  D(1:N) = A(1:N) + E
```
Example #4

\[
\begin{align*}
\text{DO } & I = 1, N \\
\text{S1: } & B(I) = A(I) + E \\
\text{S2: } & A(I + 1) = B(I) + C
\end{align*}
\]

- Which dependences exist?
- Can this loop be vectorized by distributing?
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Simple Dependence Tests

Goal: Find dependences by examining indices.

\[
\begin{align*}
\text{DO } & I = 1, N \\
& A(I + 1) = A(I) + B \\
& \text{ENDDO}
\end{align*}
\]

Is there a read-after-write dependence from \(A(I + 1) \) in iteration \(I_0 \) to the read \(A(I) \) in a subsequent iteration?

\[
l_0 + 1 = l_0 + \Delta l
\]

What value of \(\Delta l \) satisfies this equation?
True dependence testing

\[l_0 + 1 = l_0 + \Delta l \]

is satisfied by

- \(\Delta l = 1 \)
- \(1 > 0 \) (later, so true dependence, i.e. read after write)
- \(1 < N \) (will execute, assuming \(N > 1 \))
- \(d_k(i) = 1 \), so \(D_k(i) = (\prec) \)
Anti-dependence testing

Is there a write-after-read dependence from the read $A(I)$ in iteration I_0 to the write $A(I + 1)$ in a subsequent iteration?

$$I_0 + 1 + \Delta I = I_0$$

is satisfied by:

- $\Delta I = -1$
- $-1 < 0$, (earlier, no anti-dependence (i.e. write after read) found)

What if the write was $A(I - 1)$?
Multiple (Separable) Indices

DO J = 1, 100
 DO I = 1, 100
 S1: A(I+1) = A(I) + B(J)
 ENDDO
ENDDO

▶ True dependence for S1 in loop I is <
▶ Note that J does not appear in indices for A
 ▶ But there is a dependence!
The * dependence direction

- Can’t write equations for J though, so we assume “*” in direction vector
 - (*, <)
 - (<, <), (=, <), (>), (<)
- Level-1 (i.e. J-level) true dependence
- Level-2 (i.e. I-level) true dependence
- Level-1 anti-dependence
Dependence Graphs

- Nodes are statements
- Edges are dependences (from source to sink)
 - $\delta_k, \delta_k^{-1}, \delta_k^o$
Ordering in a dependence graph

- Recall, for a moment, the data flow graph used in instruction scheduling of basic blocks
- How would you generate a linear order of instructions from the DAG that respected the dependences?
DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO
DO I = 1, N
S1: \(B(I) = A(I) + E \)
S2: \(A(I + 1) = B(I) + C \)
ENDDO
Will it vectorize? Example #5

DO I = 1, N
 DO J = 1, M
 S1: A(I+1, J) = A(I, J) + B
 ENDDO
ENDDO
Example #5: Vectorized at level 2

DO I = 1, N
 A(I+1, 1:M) = A(I, 1:M) + B
ENDDO
DO I = 1, 100
 S1 X(I) = Y(I) + 10
 DO J = 1, 100
 S2 B(J) = A(J, N)
 DO K = 1, 100
 S3 A(J+1, K) = B(J) + C(J, K)
 ENDDO
 ENDDO
 S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO
Step #1: Build Dependence Graph D
Step #2: Find Strongly Connected Components in D

- SCCs isolate cyclic regions
- Use Tarjan’s algorithm
- Yields SCCs S_i
Step #3: Construct R_π

- Construct a graph R_π, where each node π_i corresponds to a SCC S_i
 - S_i is a SCC in D
- Connect nodes π_i using induced dependence graph D_π
 - I.e., if there was an edge between a node in S_i and a node in S_j, induce an edge between π_i and π_j
Step #4: Toposort R_π

- R_π is now a DAG
- Order nodes π_i of graph R_π using topological sort
Step #5: Recurse into π_i (if π_i is cyclic)

- If a node π_i is cyclic
 - Loop at this level must be executed serially
- However, inner loops may be vectorizable, so
 - Generate a new dependence graph with only dependences for inner levels
 - Recurse into this graph, starting from Step #1

Algorithm codegen (Figure 2.2) in Allen and Kennedy.
Step #6: Vectorize each node π_i in R_π (if possible)

- Process nodes π_j in topological order
- Is π_j acyclic?
 - Vectorize!
- Substitute all loop indices in inner dimensions with vectors
DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J, N)
 A(J+1, 1:100) = B(J) + C(J, 1:100)
 ENDDO
 Y(I+1:I+100) = A(2:101, N)
 ENDDO

X(1:100) = Y(1:100) + 10
Next steps

- More elaborate dependence testing
- Loop transformations
 - Improve locality
 - Improve parallelism
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
References

- Allen and Kennedy, Chapter 2, Sections 2.3 and 2.4