CSC2/455 Software Analysis and Improvement

Vectorization

Sreepathi Pai

URCS

March 25, 2019
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Loop optimizations so far

- Important applications
 - Scientific computing
 - Audio/Video processing
 - Deep Learning

- Loop Dependences
 - True, anti- and output dependences
 - Must examine dynamic trace
 - Iteration spaces, vectors, lexicographic ordering

- Identifying loop dependences
 - Restrict array index functions to affine functions
 - Formulate dependence testing as an ILP
 - Dependence exists if solutions exist
 - ILP is NP-complete

- Today
 - Vectorization
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Fortran 90 Vectorization

- If a loop contains a single statement
- And there is no loop-carried dependence
 - its iterations are independent of each other
- Then its iterations can be executed in parallel
 - “vectorization”
Example #1

DO I = 1, N
 X(I) = X(I) + C
ENDDO

can be vectorized as (Fortran-specific syntax)

X(1:N) = X(1:N) + C
Example #2

\[
\begin{align*}
\text{DO } & I = 1, N \\
& X(I+1) = X(I) + C \\
\text{ENDDO}
\end{align*}
\]

cannot be vectorized as (Fortran-specific syntax)

\[
X(2:N+1) = X(1:N) + C
\]

Fortran 90 semantics say that RHS uses original values.

- Serial code computes:
 - \(X(2) = X(1) + C \)
 - \(X(3) = X(2) + C = X(1) + C + C \)

- Vectorized code computes
 - \(X(2) = X(1) + C \)
 - \(X(3) = X(2) + C \)
 - i.e. updates on the LHS are not reflected in RHS until the entire statement has finished executing
DO I = 1, N
S1: $A(I + 1) = B(I) + C$
S2: $D(I) = A(I) + E$
ENDDO

Note loop-carried dependence $S1 \delta S2$
Can this be vectorized?
Example #3: Vectorized by Distribution

DO I = 1, N
 S1: A(I + 1) = B(I) + C
ENDDO
DO I = 1, N
 S2: D(I) = A(I) + E
ENDDO

► Loop "distribution"

 A(2:N+1) = B(1:N) + C
 D(1:N) = A(1:N) + E
Example #4

```
DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO
```

▶ Which dependences exist?
▶ Can this loop be vectorized by distributing?
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
Simple Dependence Tests

Goal: Find dependences by examining indices.

```plaintext
DO I = 1, N
   A(I + 1) = A(I) + B
ENDDO
```

Is there a read-after-write dependence from \(A(I + 1) \) in iteration \(I_0 \) to the read \(A(I) \) in a subsequent iteration?

\[
l_0 + 1 = l_0 + \Delta l
\]

What value of \(\Delta l \) satisfies this equation?
True dependence testing

\[l_0 + 1 = l_0 + \Delta l \]

is satisfied by

- \(\Delta l = 1 \)
- \(1 > 0 \) (later, so true dependence, i.e. read after write)
- \(1 < N \) (will execute, assuming \(N > 1 \))
- \(d_k(i) = 1 \), so \(D_k(i) = (<) \)
Anti-dependence testing

Is there a write-after-read dependence from the read $A(I)$ in iteration I_0 to the write $A(I + 1)$ in a subsequent iteration?

$$I_0 + 1 + \Delta I = I_0$$

is satisfied by:

- $\Delta I = -1$
- $-1 < 0$, (earlier, no anti-dependence (i.e. write after read) found)

What if the write was $A(I - 1)$?
Multiple (Separable) Indices

```
DO J = 1, 100
    DO I = 1, 100
    S1: A(I+1) = A(I) + B(J)
    ENDDO
ENDDO
```

- True dependence for S1 in loop I is `<`
- Note that J does not appear in indices for A
 - But there is a dependence!
The * dependence direction

- Can’t write equations for J though, so we assume “*” in direction vector
 - (*,<)
 - (<, <), (=, <), (> ,<)
 - Level-1 (i.e. J-level) true dependence
 - Level-2 (i.e. I-level) true dependence
 - Level-1 anti-dependence
Dependence Graphs

- Nodes are statements
- Edges are dependences (from source to sink)
 - \(\delta_k, \delta_k^{-1}, \delta_k^o \)
Ordering in a dependence graph

▶ Recall, for a moment, the data flow graph used in instruction scheduling of basic blocks

▶ How would you generate a linear order of instructions from the DAG that respected the dependences?
DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO
DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO
DO I = 1, N
 DO J = 1, M
 S1: A(I+1, J) = A(I, J) + B
 ENDDO
 ENDDO
Example #5: Vectorized at level 2

DO I = 1, N
 A(I+1, 1:M) = A(I, 1:M) + B
ENDDO
DO I = 1, 100
 X(I) = Y(I) + 10
 DO J = 1, 100
 B(J) = A(J, N)
 DO K = 1, 100
 A(J+1, K) = B(J) + C(J, K)
 ENDDO
 ENDDO
 Y(I+J) = A(J+1, N)
ENDDO
Step #1: Build Dependence Graph D
Step #2: Find Strongly Connected Components in D

- SCCs isolate cyclic regions
- Use Tarjan’s algorithm
- Yields SCCs S_i
Step #3: Construct R_π

- Construct a graph R_π, where each node π_i corresponds to a SCC S_i
 - S_i is a SCC in D
- Connect nodes π_i using induced dependence graph D_π
 - I.e., if there was an edge between a node in S_i and a node in S_j, induce an edge between π_i and π_j
Step #4: Toposort R_{π}

- R_{π} is now a DAG
- Order nodes π_i of graph R_{π} using topological sort
Step #5: Recurse into π_i (if π_i is cyclic)

- If a node π_i is cyclic
 - Loop at this level must be executed serially
- However, inner loops may be vectorizable, so
 - Generate a new dependence graph with only dependences for inner levels
 - Recurse into this graph, starting from Step #1

Algorithm codegen (Figure 2.2) in Allen and Kennedy.
Step #6: Vectorize each node π_i in R_{π} (if possible)

- Process nodes π_j in topological order
- Is π_j acyclic?
 - Vectorize!
- Substitute all loop indices in inner dimensions with vectors
DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J, N)
 A(J+1, 1:100) = B(J) + C(J, 1:100)
 ENDDO

 Y(I+1:I+100) = A(2:101, N)
ENDDO

X(1:100) = Y(1:100) + 10
Next steps

- More elaborate dependence testing
- Loop transformations
 - Improve locality
 - Improve parallelism
Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript
References

- Allen and Kennedy, Chapter 2, Sections 2.3 and 2.4