CSC2/455 Software Analysis and Improvement
Dependence Testing

Sreepathi Pai

URCS

April 1, 2019
Outline

Review

Dependence Testing

Loop transformations

Postscript
Outline

Review

Dependence Testing

Loop transformations

Postscript
Loop optimizations so far

- Important applications
- Loop Dependences
- Identifying loop dependences
- Vectorization
Outline

Review

Dependence Testing

Loop transformations

Postscript
The need for dependence testing

- Recall vectorization needs a dependence graph
 - If no dependence, can be vectorized!
 - Otherwise, need to figure out what the type of dependences exist
 - And their direction

- Other loop transformations (not just vectorization) will depend heavily on accurate dependence information

- General problem requires solving an ILP
 - Can we avoid this?
Recall: Dependence using Iteration Vectors

Let α and β be iteration vectors:

- $\alpha = (i_1, i_2, i_3, \ldots, i_N)$
- $\beta = (i'_1, i'_2, i'_3, \ldots, i'_N)$

Then a dependence exists if:

- (vectors) $\alpha < \beta$
- $f_X(\alpha) = g_X(\beta)$, for $1 \leq X \leq M$
- remember, f_X and g_X are assumed to be affine expressions
 - if they are not?
“Independence” Testing

- If no solutions to the ILP exist, then there are no dependences!
- Otherwise:
 - What is direction of dependence?
 - What level of the loop carries the dependence?
Exact and Conservative Tests

- **Conservative test**
 - Always correct when it determines there is no dependence
 - May be wrong when it determines there is a dependence

- **Exact tests**
 - Detects dependence if and only if they actually exist
Subscripts

DO i
 DO j
 DO k
 A(i, j) = A(i, k) + C
 ...

- First subscript: i and i
- Second subscript: j and k
ZIV, SIV and MIV

DO i
 DO j
 DO k
 A(5, i+1, j) = A(N, i, k) + C
 ENDDO
 ENDDO
ENDDO

- First subscript 5 and N are zero-index variable (ZIV) subscripts
- Second subscript $i + 1$ and i are single-index variable (SIV) subscripts
- Third subscript j and k are multiple-index variable (MIV) subscripts
Why ZIV, SIV and MIV matter

- Classifying subscripts allows tests tailored to each class of subscript
 - ZIV can simply be tested for equality
 - SIV tests are usually simpler than MIV tests
- Other notions that help simplify dependence testing:
 - Separability: a subscript does not share its index variables with other subscripts
 - Coupled: some subscripts share index variables
 \[A(i+1,j,k-1) = A(i,j+i,k-1) \]
 - See AK, Section 3.2 for more
The GCD test for integral solutions

The (linear) Diophantine equation:

\[a_1 i_1 + a_2 i_2 + \ldots + a_n i_n = c \]

has solutions only if the greatest common divisor (gcd):

\[\text{gcd}(a_1, a_2, \ldots, a_n) \]

divides \(c \)
Examples

▪ $2i - 2j = 1$
▪ $9x + 15y + 21z = 30$
▪ Consider these together:
 ▪ $x - 2y + z = 0$
 ▪ $3x + 2y + z = 5$
▪ After solving for z?
The GCD test returns false for an affine equality if the gcd does not divide c.

So, for each affine expression:
- Check if the GCD test returns false, this implies no dependence.

If the GCD test returns true for all equations:
- Solve them using (e.g.) gaussian elimination.
- Redo the GCD test, if result is false implies no dependence.

GCD is not an exact test.
- Solutions may exist outside loop iteration space.
Other heuristics

- Dragon Book 11.6.4
 - Independent Variables Test
 - Acyclic Test
 - The Loop Residue Test
- AK, Chapter 3
 - Various SIV tests
 - Banerjee’s Inequality
 - Delta test
 - See 3.4.2 for more, esp. the Omega test
Outline

Review

dependence testing

Loop transformations

Postscript
Operating on intermediate forms

- All examples so far on FORTRAN source code
 - with loops clearly marked
 - with loop indices and array indices easily related
- Can we operate on an intermediate representation?
 - Identify loops in CFGs
 - Identify loop *induction variables*
Identifying loops

- **Back edge**
 - An edge between nodes t and h, i.e. $t \rightarrow h$, where h dominates t

- **A natural loop has a single-entry header node:**
 - All nodes in the loop are dominated by the header
 - There is a *back edge* to the header node

- More formally, the natural loop for a back edge $n \rightarrow d$,
 - is the set of all nodes that can reach n without going through d

- Can be constructed using a depth-first search on the reverse CFG
 - See Algorithm 9.46 in the Dragon Book, Chapter 9, Section 9.6.6
An induction variable is a variable that changes by a fixed constant value every iteration of the loop

- Can be computed using a single addition/subtraction every iteration
- Can be used to eliminate multiplications
 - Strength reduction
The problem with induction variables

```c
for(i = 1; i < 10; i++) {
    k = 3 * i;
}
```

▶ k is not an index variable
 ▶ Can’t use in dependence tests
▶ It is, however, an induction variable
 ▶ Also, an affine function of the index variable
Substituting induction variables

for(i = 1; i < 10; i++) {
}

See AK, Chapter 4, Section 4.5, for algorithms.
Loop normalization

for(i = 3; i < 30; i+=3) {
}

After normalization:

for(i = 1; i < 10; i+=1) {
}
Loop Transformation Workflow

- Identify loops
- Identify induction variables
- Normalize loops
 - Loop bounds start from 0 (or 1)
 - Loop bounds increase by 1
 - All array index expressions only involve index variables or loop-invariant expressions
- Perform dependence analysis
- Transform code
 - (already seen) Vectorization
 - Others: today and next lecture
Loop Source Transformations

See Dragon Book, Section 11.7.8 for affine transformations that lead to source code transformations demo-ed on the remaining slides.
Loop Fusion

Before:

\[
\text{for}(i = 1; i \leq N; i++) \\
\quad Y[i] = Z[i]; \\
\]

\[
\text{for}(j = 1; j \leq N; j++) \\
\quad X[j] = Y[j]; \\
\]

After:

\[
\text{for}(p = 1; p \leq N; p++) \\
\quad Y[p] = Z[p]; \\
\quad X[p] = Y[p]; \\
\]
Loop Fission

Before:

```c
for(p = 1; p <= N; p++)
    Y[p] = Z[p];
    X[p] = Y[p];
```

After:

```c
for(i = 1; i <= N; i++)
    Y[i] = Z[i];

for(j = 1; j <=N; j++)
    X[j] = Y[j];
```
Loop Re-indexing

Before:

 for(i = 1; i <= N; i++)
 Y[i] = Z[i];
 X[i] = Y[i - 1];

After:

 if(N >=1) X[1] = Y[0]
 for(p = 1; p <= N-1; p++) {
 Y[p] = Z[p];
 X[p+1] = Y[p];
 }
 if(N>=1) Y[N] = Z[N];
Loop Scaling

Before:

```c
for(i = 1; i <= N; i++)
    Y[2*i] = Z[2*i];

for(j = 1; j <= 2*N; j++)
    X[j] = Y[j];
```

After:

```c
for(p = 1; p <= 2*N; p++) {
    if(p mod 2 == 0)
        Y[p] = Z[p];
    X[p] = Y[p];
}
```
Loop Reversal

Before:

```c
for(i = 0; i <= N; i++)
    Y[N-i] = Z[i];

for(j = 0; j <= N; j++)
    X[j] = Y[j];
```

After:

```c
for(p = 0; p <= N; p++) {
    Y[p] = Z[N-p];
    X[p] = Y[p];
}
```
Loop Permutation

Before:

```c
for(i = 1; i <=N; i++)
    for(j = 0; j <=M; j++)
        Z[i, j] = Z[i-1, j];
```

After:

```c
for(p = 0; p <= M; p++)
    for(q = 0; q <= N; q++)
        Z[q, p] = Z[q-1, p];
```
Loop Skewing

Before:

```c
for(i = 1; i < N + M - 1; i++)
    for(j = max(1, i+N); j <= min(i, M); j++)
        Z[i, j] = Z[i-1, j-1];
```

After:

```c
for(p = 1; p<=N; p++)
    for(q = 1; q<=M; q++)
        Z[p, q-p] = Z[p-1, q-p-1];
```
References

- Allen and Kennedy, Chapter 3
- Alternatively, Chapter 11, Sections 11.4 and 11.6 of the Dragon book
- Section 11.7.8 of the Dragon Book