CSC2/455 Software Analysis and Improvement
Program Analysis II – Model Checking

Sreepathi Pai

URCS

April 24, 2019
Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript
Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript
The Plan

- Compiler Assignment
- Automatically Grade Assignments
- No Two Assignments Produce Identical Code
- No Two Assignments Produce Identical Code
Check for Equivalence

- A: Original source program
- B: Compiler-generated program (e.g. your 3-address code)
- Is $A = B$?
 - Program equivalence problem
 - Undecidable in general
Test?

- Develop test cases
- Run B with these test cases
 - Works
 - Tests may miss bugs
- Also, many programs harder to test
 - Don’t have main
 - Accept input interactively
 - Buggy compilers may introduce infinite loops
Solution

- Ended up using bounded model checking for C
 - CBMC
- Allows me to check that certain properties hold across all executions
- Can still require manual inspection
 - And I manually inspected all your results – successful or not
Computing the minimum of three numbers

```c
int min_of_3(int x, int y, int z) {
    int min3;

    if(x > y) {
        if(y > z) {
            min3 = z;
        } else {
            min3 = y;
        }
    } else {
        if(x > z) {
            min3 = z;
        } else {
            min3 = x;
        }
    }

    return min3;
}
```
Adding Assertions

```c
int min_of_3(int x, int y, int z) {
    ...

    __CPROVER_assert(min3 == x || min3 == y || min3 == z, "must be one of inputs");
    __CPROVER_assert(min3 <= x, "<= x");
    __CPROVER_assert(min3 <= y, "<= y");
    __CPROVER_assert(min3 <= z, "<= z");

    return min3;
}
```

(Note: CBMC can also use existing assert statements)
Verifying

$ cbmc --function min_of_3 filename.c
CBMC version 5.6 64-bit x86_64 linux
...
Removal of function pointers and virtual functions
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 64 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
...

** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min_of_3.assertion.2] <= x: SUCCESS
[min_of_3.assertion.3] <= y: SUCCESS
[min_of_3.assertion.4] <= z: SUCCESS

** 0 of 4 failed (1 iteration)
VERIFICATION SUCCESSFUL
Another implementation

```c
int min_of_3(int x, int y, int z) {
    int min3;

    if(x > y && y > z) {
        min3 = z;
    } else {
        if(x > y)
            min3 = y;
        else
            min3 = x;
    }

    __CPROVER_assert(min3 == x || min3 == y || min3 == z,
                     "must be one of inputs");

    __CPROVER_assert(min3 <= x, "<= x");
    __CPROVER_assert(min3 <= y, "<= y");
    __CPROVER_assert(min3 <= z, "<= z");

    return min3;
}
```
Verifying

CBMC version 5.6 64-bit x86_64 linux

... Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 58 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier

... Runtime decision procedure: 0.018s

** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min_of_3.assertion.2] <= x: SUCCESS
[min_of_3.assertion.3] <= y: SUCCESS
[min_of_3.assertion.4] <= z: FAILURE

** 1 of 4 failed (2 iterations)
VERIFICATION FAILED
$ cbmc --trace --function min_of_3 file.c

... State 17 file min3_2.c line 1 thread 0

 INPUT x: -1412553063 (10101011110011100010011010011001)

State 19 file min3_2.c line 1 thread 0

 INPUT y: -1151925590 (1011101101011110000001010101010)

State 21 file min3_2.c line 1 thread 0

 INPUT z: -1949367656 (10001011110011110000001010011000)

...

State 30 file min3_2.c line 10 function min_of_3 thread 0

 min3=-1412553063 (10101011110011100010011010011001)

Violated property:
 file min3_2.c line 17 function min_of_3
 <= z
 min3 <= z
Loops: Definite Bounds

for(i = 0; i < 10; i++) {
 ...
}

CBMC will unroll loop.
Loops: Symbolic Bounds

for (i = 0; i < N; i++)
 B;

gets unrolled by a fixed number (B is body), with unroll assert:

i = 0;
if (i < N) {
 B;
 i++;

 if (i < N) {
 B;
 i++;

 assert (N == 2);
 }
}

▶ If assert fails, unrolling was insufficient.
▶ Not sound!
▶ Otherwise, conclusion is sound
Other complications

- Pointers, arrays, dynamic memory allocation, etc.
- See CPROVER manual for more details
Basic Ideas

- Formula φ
 - Correctness (Safety) property
 - Propositional logic
 - Example: first argument of all the `__CPROVER_assert` statements
- Interpretation \mathcal{K}
 - More on this later
- We ask: $\mathcal{K} \models \varphi$?
 - Is φ true in \mathcal{K}?
Transition System

- $\mathcal{T} = (Q, I, E, \delta)$
 - set of states Q (e.g. values of all variables)
 - initial states $I \in Q$
 - action labels E (e.g. program statements)
 - (total) transition relation $\delta \subseteq Q \times E \times Q$

- A run of \mathcal{T} is the same as a trace of states
 - $s_0e_0s_1...$ where $(s_0, e_0, s_1) \in \delta$, and $s_0 \in I$

- A reachable state is a state that exists in some run.
Kripke Structures

- Let \mathcal{V} be a set of propositions
 - e.g. $\text{min}3 \leq x$
 - e.g. $\text{min}3 \leq y$
- A Kripke structure $\mathcal{K} = (Q, I, E, \delta, \lambda)$ is a transition system where:
 - $\lambda : Q \to 2^{\mathcal{V}}$
- λ is a function that maps a state q to the (subset) of propositions from \mathcal{V} that are true in that state
 - $q \models P$ where $P \in \mathcal{V}$
Kripke structure for our min-of-3 example

Let p be the "must be one of inputs" proposition
Let q, r, s be the $\leq x, \leq y, \leq z$ proposition
(Note: True propositions in internal states not shown)
An invariant is a safety property for the system that holds in every reachable state.

An inductive invariant holds in the initial state, and is preserved by all transitions:
- including transitions from unreachable states.
- more on this when we discuss Hoare Logic.
Invariant Checking Algorithm: High level details

- Assume finite Kripke structure
- Given an invariant to check,
 - Enumerate all reachable states
 - Check that invariant holds in all of them
Invariant Checking Algorithm: Pseudocode

```python
def verify_inv(ks, inv):
    done = set()
    todo = set()

    for s in ks.initial_states():
        if s in done: continue

        todo.add(s)

    while len(todo) > 0:
        ss = todo.pop()
        done.add(ss)

        if not ss.satisfies(inv): return False

        for succ in ss.successors():
            if succ not in done: todo.add(succ)

    return True
```

based on Figure 3.3 in S. Merz, An introduction to Model Checking.
Progress

- Does something “good” eventually happen?
- Does the system ever deadlock?
- Does the system livelock?
 - An action e is no longer possible after a particular state q_i
 - These require reasoning over *sequences* of states
 - These can be infinite even in a finite Kripke structure

These properties need a *temporal* logic, that incorporates notions of (logical) “time points” into formulae we want to check.
Let $\sigma = q_0q_1\ldots$ be a sequence of states
- σ_i is the state i
- $\sigma|_i$ is the suffix $q_iq_{i+1}\ldots$ of σ

Let ϕ be a formula
- $\sigma \models \phi$ if $\phi \in \lambda(\sigma_0)$
- $X\phi$ (also a formula), read as “next ϕ”,
 - $\sigma \models X\phi$ if $\sigma|_1 \models \phi$
- $\phi U \psi$ (also a formula), read as “ϕ until ψ”
 - $\sigma \models \phi U \psi$ if and only if there exists $k \in \mathbb{N}$
 - $\sigma|_k \models \psi$
 - for all $1 \leq i < k$, $\sigma|_i \models \phi$
- Note: ϕ can continue to hold after k
More temporal properties

- $F\varphi$, “eventually φ”
 - $\text{trueU}\varphi$
- $G\varphi$, “always φ”
 - $\neg F\neg \varphi$
- $\varphi W\psi$, “φ unless ψ”
 - $(\varphi U\psi) \lor G\psi$
- $GF\varphi$
- $FG\varphi$
Some examples of invariants

- $\mathsf{G} \neg (\mathit{own}_1 \land \mathit{own}_2)$
 - where own_1 and own_2 are propositions representing states in which locks for resource are obtained by process 1 and 2

- Other properties (see the reading)
 - weak and strong fairness
 - precedence
 - etc.
Existential and Universal Properties: CTL

- Branching time logic for properties of systems
 - Computation Tree Logic (CTL)
- $\text{EX} \varphi$, there exists a transition where φ holds from current state
- $\text{EG} \varphi$, exists a path from current state where φ holds on all states
- EU, exists a path until...
- Also Ax properties, properties that hold on all possible paths from current state
Verifying PTL and CTL invariants?

- State sequences of infinite length possible
- How do we check invariants?
Büchi Automata

- \(\omega \)-automaton
 - run on infinite strings
- strings represent state sequences (actually \(\lambda(q_0)\lambda(q_1)... \))
- non-deterministic as well as deterministic
 - but non-deterministic Büchi automata more powerful
Büchi Automata Example

Stephan Merz, An Introduction to Model Checking
Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript
Further Reading and Links

- Stephan Merz, An Introduction to Model Checking
 - Accessible and good introduction, with links to other material
- Spin Model Checker
- Selected industrial applications
 - CACM, "How Amazon Web Services Uses Formal Methods"
 - CACM, "A Decade of Software Model Checking with SLAM"
- A segue into compiler verification
 - Ken Thompson, Reflections on Trusting Trust, Turing Award Lecture 1984
 - The COMPCERT project