CSC2/455 Software Analysis and Improvement
Program Analysis III – Deductive Techniques

Sreepathi Pai

URCS

April 29, 2019
Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript
Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript
Proving Programs Correct

How do we:

▶ specify the behaviour of programs?
▶ prove that an implementation matches its specification?
▶ check that the proof is sound?
Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

\(\{P\} C \{Q\} \)

- \(P\) is a precondition
- \(C\) is a statement, function or program
- \(Q\) is a postcondition
- Both \(P\) and \(Q\) are logical statements, e.g., what you would put in an assert

Read as: If \(P\) holds, and \(C\) executes (and terminates), then \(Q\) holds. Therefore, \(P\) and \(Q\) are assertions, usually over program state.
Partial and Total Correctness

- Note that if C does not terminate, Q may or may not be true
 - This is the notion of *partial correctness*

- If C can be shown (formally) to terminate, then we achieve a proof of *total correctness*

 Total correctness = Termination + Partial Correctness
Some examples

- \(\{X = 1\} \ Y := X \{Y = 1\} \)
- \(\{X = 1\} \ Y := X \{Y = 2\} \)
- \(\{\text{true}\} \ C \{Q\} \)
- \(\{P\} \ C \{\text{true}\} \)
- \(\{P\} \ C \{\text{false}\} \)
Formal Proof

- (informally) Proofs at the level of rigour that even a computer could understand!
- Usually, each step in the proof is *explicitly* annotated as to how it was obtained from the previous steps
 - Makes it easy to check (esp. for computers)
 - Either the use of an *axiom* or a *rule of inference*
- Painful to construct by hand
 - Interactive proof assistants like Coq and Isabelle usually make it more fun
 - (if you’ve disliked writing proofs, try them!)
The assignment axiom of Hoare Logic

- $P[E/V]$ is read as P with all instances of V replaced by E
 - P with E for V

- $\{X = 1\}[Y/X]$ leads to $\{Y = 1\}$

Considering proving this:

- $\{X = 1\} Y := X \{Y = 1\}$

We can do this using the assignment axiom

- $\vdash \{P[E/V]\} V := E \{P\}$
Two incorrect assignment axiom forms

▶ ⊢ \{P\} V := E\{P[E/V]\}
▶ ⊢ \{P\} V := E\{P[V/E]\}
Precondition strengthening

If $\vdash \{P'\} C\{Q\}$, and $P \implies P'$, then we can write $\vdash \{P\} C\{Q\}$

$\uparrow \{X + 1 = n + 1\} X := X + 1 \{X = n + 1\}$ (assignment axiom)

$\uparrow \vdash X = n \implies X + 1 = n + 1$ (from arithmetic)

$\uparrow \{X = n\} X := X + 1 \{X = n + 1\}$ (precondition strengthening)
Postcondition weakening

If $\vdash \{P\} C \{Q'\}$, and $Q' \implies Q$, then we can write $\vdash \{P\} C \{Q\}$

- $\{R = X\} \ Q := 0 \ \{R = X \land Q = 0\}$
- $R = X \land Q = 0 \implies R = X + (Y \times Q)$
- $\{R = X\} \ Q := 0 \ \{R = X + (Y \times Q)\}$ (postcondition weakening)
Conjunctions and Disjunctions

If \(\vdash \{ P_1 \} C \{ Q_1 \} \) and \(\vdash \{ P_2 \} C \{ Q_2 \} \), then
\(\vdash \{ P_1 \land P_2 \} C \{ Q_1 \land Q_2 \} \)

If \(\vdash \{ P_1 \} C \{ Q_1 \} \) and \(\vdash \{ P_2 \} C \{ Q_2 \} \), then
\(\vdash \{ P_1 \lor P_2 \} C \{ Q_1 \lor Q_2 \} \)
Sequencing Rule

- If $\vdash \{ P \} C_1 \{ Q \}$ and $\vdash \{ Q \} C_2 \{ R \}$, then $\vdash \{ P \} C_1 ; C_2 \{ R \}$

- You can combine the sequencing rule and the rules of consequence (i.e. precondition strengthening and postcondition weakening) to extend this to multiple statements.
The Conditional Rule

If $\vdash \{P \land S\} C_1\{Q\}$ and $\vdash \{P \land \neg S\} C_2\{Q\}$, then

$\{P\}$ IF S THEN C_1 ELSE C_2 {Q}
The While Rule

- If $\{ P \land S \} C \{ P \}$ then
 - $\{ P \} \text{ WHILE } S \text{ DO } C \text{ ENDDO } \{ P \land \neg S \}$
- Here, P is called an inductive loop invariant
 - It is true on entry and exit into loop
 - It is true after every iteration of the loop
More rules

- FOR-rule
- Handling arrays
 - variant of assignment, due to McCarthy
Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript
Example

\[X = x \land Y = y \]

\[
\begin{align*}
R & := X; \\
X & := Y; \\
Y & := R;
\end{align*}
\]

\[X = y \land Y = x \]
Summary of steps

- Add assertions/specifications that must hold at points in the program
 - called annotations
- Generate a set of verification conditions (VCs) from the program + specification
- Prove the verification conditions
 - These imply the annotations are true
Generating VCs for assignment

- The verification condition for a statement $\{P\} V := E\{Q\}$ is:
 - $P \implies Q[E/V]$ (assignment verification condition)
- How does showing this is true prove $\vdash \{P\} V := E\{Q\}$?
Why the VC for assignment works

- From Hoare Logic, we have:
 - \{Q[E/V]\} V := E\{Q\}
- If we prove \(P \implies Q[E/V] \), then by precondition strengthening, we have:
 - \{P\} V := E\{Q\}
- Which is what we had to prove.

What if we can't prove \(P \implies Q[E/V] \)? Does that mean \{P\} C\{Q\} does not hold?
Sufficiency and Incompleteness

▶ VCs are *sufficient*, but not necessary
 ▶ There may be other ways to prove \(\{P\}C\{Q\} \)
▶ Mechanical provers cannot prove everything
 ▶ Gödel’s Incompleteness Theorem
More complicated example: Integer Division

Source material, page 45
Can machines really do this?

Dafny
Summary

- Annotations are inserted by programmer
- Verification conditions are generated by compiler/verifier
- Verification conditions are proved by theorem prover
 - Cannot always be automated
More stuff

- Generating VCs for other statements in language
- Soundness?
- Completeness?
- Decidability?
- Pointers: Separation logic
Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript
Sources, further reading and links

- Background Reading on Hoare Logic, by Mike Gordon
- The Dafny Project at Microsoft Research
 - Try it in your browser: dafny at rise4fun (work through the Dafny tutorial)
 - More reading (including 4-part video lectures)
- IEEE CSDL, Accessible Software Verification with Dafny
- Textbooks
 - Software Foundations: Vol 1: Logical Foundations,
 - Software Foundations: Vol 2: Programming Language Foundations